"...git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "185d0af5449979110c833e84cba30a9c12420f49"
test_modeling_common.py 40.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import random
19
import tempfile
thomwolf's avatar
thomwolf committed
20
import unittest
21
from typing import List
thomwolf's avatar
thomwolf committed
22

23
from transformers import is_torch_available
24
from transformers.testing_utils import require_multigpu, require_torch, slow, torch_device
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29
    import numpy as np
thomwolf's avatar
thomwolf committed
30

31
32
33
34
35
36
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
37
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
39
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
40
        top_k_top_p_filtering,
41
    )
thomwolf's avatar
thomwolf committed
42

43

44
45
46
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
47
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
48
            setattr(configs_no_init, key, 1e-10)
49
50
    return configs_no_init

thomwolf's avatar
thomwolf committed
51

52
53
54
55
56
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
57
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
62
    test_missing_keys = True
63
64
    is_encoder_decoder = False

65
66
67
68
    def _prepare_for_class(self, inputs_dict, model_class):
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
            return {
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
                if isinstance(v, torch.Tensor) and v.ndim != 0
                else v
71
72
73
74
                for k, v in inputs_dict.items()
            }
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
75
    def test_save_load(self):
76
77
78
79
80
81
82
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
83
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
84
            out_2 = outputs[0].cpu().numpy()
85
            out_2[np.isnan(out_2)] = 0
86

87
            with tempfile.TemporaryDirectory() as tmpdirname:
88
89
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
90
                model.to(torch_device)
91
                with torch.no_grad():
92
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
93

94
95
96
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
97
98
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
99

Patrick von Platen's avatar
Patrick von Platen committed
100
    def test_initialization(self):
101
102
103
104
105
106
107
108
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
109
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
110
111
112
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
113

Patrick von Platen's avatar
Patrick von Platen committed
114
    def test_determinism(self):
115
116
117
118
119
120
121
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
122
123
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
124
125
126
127
128
129
130
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
131
    def test_attention_outputs(self):
132
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
133
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
134
135
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
136
137
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
141
142

        for model_class in self.all_model_classes:
143
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
144
            inputs_dict["output_hidden_states"] = False
145
146
147
148
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
149
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
150
            attentions = outputs[-1]
151
152
153
154
155
156
157
158
159
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
160
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
161
            attentions = outputs[-1]
162
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
163
164
165
166
167
168
169
170
171
172
173

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
174
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
175

176
            if self.is_encoder_decoder:
177
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
178
                decoder_attention_idx = 1
179

180
181
182
183
184
185
186
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                    decoder_attention_idx += 1
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Sam Shleifer's avatar
Sam Shleifer committed
187
188
189
190
191
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
192
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
193
                self.assertListEqual(
194
195
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
196
                )
thomwolf's avatar
thomwolf committed
197

198
            # Check attention is always last and order is fine
199
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
200
            inputs_dict["output_hidden_states"] = True
201
202
203
204
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
205
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
206
207
208
209
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
213
214
215
216
217
218
219
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
220

Patrick von Platen's avatar
Patrick von Platen committed
221
    def test_torchscript(self):
222
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
223

224
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
225

Patrick von Platen's avatar
Patrick von Platen committed
226
    def test_torchscript_output_attentions(self):
227
228
229
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
230

Patrick von Platen's avatar
Patrick von Platen committed
231
    def test_torchscript_output_hidden_state(self):
232
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
233

234
235
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
236

237
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
238
        if not self.test_torchscript:
239
            return
240

241
242
243
244
245
246
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
247
            inputs = self._prepare_for_class(inputs_dict, model_class)["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
248

249
250
251
252
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
253

254
            with tempfile.TemporaryDirectory() as tmp_dir_name:
255
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
256

257
258
259
260
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
261

262
263
264
265
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
266

267
268
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
269

270
271
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
272

273
274
275
276
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
277

278
            models_equal = True
279
280
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
281
282
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
283

284
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
285

Patrick von Platen's avatar
Patrick von Platen committed
286
287
    def test_headmasking(self):
        if not self.test_head_masking:
288
            return
289

290
291
292
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
293

294
        inputs_dict["output_attentions"] = True
295
296
297
298
299
300
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
301

302
303
304
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
305
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
306
307
308
309
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
310
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
340
341
    def test_head_pruning(self):
        if not self.test_pruning:
342
343
344
            return

        for model_class in self.all_model_classes:
345
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
346

347
348
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
349

350
            inputs_dict["output_attentions"] = True
351
352
353
354
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
355
356
357
358
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
359
360
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
361
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
362

363
            attentions = outputs[-1]
364

365
366
367
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
368

Patrick von Platen's avatar
Patrick von Platen committed
369
370
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
371
            return
LysandreJik's avatar
LysandreJik committed
372

373
        for model_class in self.all_model_classes:
374
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
375
376
377

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
378

379
            inputs_dict["output_attentions"] = True
380
381
382
383
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
384
385
386
387
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
388
            model.prune_heads(heads_to_prune)
389

390
            with tempfile.TemporaryDirectory() as temp_dir_name:
391
392
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
393
                model.to(torch_device)
394

395
            with torch.no_grad():
396
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
397
398
399
400
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
401

Patrick von Platen's avatar
Patrick von Platen committed
402
403
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
404
            return
405

406
        for model_class in self.all_model_classes:
407
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
408

409
410
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
411

412
            inputs_dict["output_attentions"] = True
413
            config.output_hidden_states = False
414

415
416
417
418
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
419
            config.pruned_heads = heads_to_prune
420

421
422
423
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
424

425
            with torch.no_grad():
426
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
427
            attentions = outputs[-1]
428

429
430
431
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
432

Patrick von Platen's avatar
Patrick von Platen committed
433
434
    def test_head_pruning_integration(self):
        if not self.test_pruning:
435
            return
436

437
        for model_class in self.all_model_classes:
438
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
439

440
441
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
442

443
            inputs_dict["output_attentions"] = True
444
            config.output_hidden_states = False
445

446
447
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
448

449
450
451
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
452

453
            with torch.no_grad():
454
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
455
            attentions = outputs[-1]
456

457
458
459
460
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
461

462
            with tempfile.TemporaryDirectory() as temp_dir_name:
463
464
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
465
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
466

467
            with torch.no_grad():
468
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
469
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
470

471
472
473
474
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
475

476
477
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
478

479
            with torch.no_grad():
480
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
481
            attentions = outputs[-1]
482

483
484
485
486
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
487

488
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
489

Patrick von Platen's avatar
Patrick von Platen committed
490
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
491
        def check_hidden_states_output(inputs_dict, config, model_class):
492
            model = model_class(config)
493
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
494
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
495

thomwolf's avatar
thomwolf committed
496
            with torch.no_grad():
497
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
498
            hidden_states = outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
499

Joseph Liu's avatar
Joseph Liu committed
500
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
501
502
503
504
505
506
507
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

508
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
509
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
510
            )
thomwolf's avatar
thomwolf committed
511

Joseph Liu's avatar
Joseph Liu committed
512
513
514
515
516
517
518
519
520
521
522
523
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Patrick von Platen's avatar
Patrick von Platen committed
524
    def test_resize_tokens_embeddings(self):
525
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
526
        if not self.test_resize_embeddings:
527
528
529
530
531
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
532
            model.to(torch_device)
533

Patrick von Platen's avatar
Patrick von Platen committed
534
535
536
            if self.model_tester.is_training is False:
                model.eval()

537
538
539
540
541
542
543
544
545
546
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
547
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
548
            model(**self._prepare_for_class(inputs_dict, model_class))
549
550
551
552
553
554
555

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

556
557
558
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
559
            model(**self._prepare_for_class(inputs_dict, model_class))
560

561
562
563
564
565
566
567
568
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
569
    def test_model_common_attributes(self):
570
571
572
573
574
575
576
577
578
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

579
    def test_correct_missing_keys(self):
580
581
        if not self.test_missing_keys:
            return
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
649
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
650

651
652
653
654
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
655
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
656
            model.eval()
657

658
659
660
661
662
663
664
665
666
667
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

668
669
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
670
                inputs["inputs_embeds"] = wte(input_ids)
671
            else:
672
673
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
674

thomwolf's avatar
thomwolf committed
675
            with torch.no_grad():
676
                model(**inputs)
677

678
    def test_lm_head_model_random_no_beam_search_generate(self):
679
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
680
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
681

Patrick von Platen's avatar
Patrick von Platen committed
682
683
684
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

685
        # iterate over all generative models
686
        for model_class in self.all_generative_model_classes:
687
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
688
            model.eval()
689
690

            if config.bos_token_id is None:
691
                # if bos token id is not defined, model needs input_ids
692
                with self.assertRaises(AssertionError):
693
                    model.generate(do_sample=True, max_length=5)
694
                # num_return_sequences = 1
695
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
696
            else:
697
                # num_return_sequences = 1
698
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
699

700
            with self.assertRaises(AssertionError):
701
                # generating multiple sequences when no beam search generation
702
703
704
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

705
706
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
707
708

            # check bad words tokens language generation
709
            # create list of 1-seq bad token and list of 2-seq of bad tokens
710
711
712
713
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
714
            output_tokens = model.generate(
715
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
716
            )
717
            # only count generated tokens
718
719
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
720

721
722
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
723
724
725
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
726

Patrick von Platen's avatar
Patrick von Platen committed
727
728
729
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

730
        for model_class in self.all_generative_model_classes:
731
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
732
            model.eval()
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
752
753
754
755
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
756
            output_tokens = model.generate(
757
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
758
            )
759
            # only count generated tokens
760
761
762
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

763
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
764
        # special tokens cannot be bad tokens
765
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
766
767
768
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
769
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
770
771
772
773
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

774
    def _check_generated_ids(self, output_ids):
775
776
777
778
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

779
780
781
782
783
784
785
786
787
788
789
790
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
814
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
815

816

817
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
818
819


thomwolf's avatar
thomwolf committed
820
def ids_tensor(shape, vocab_size, rng=None, name=None):
821
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
822
    if rng is None:
823
        rng = global_rng
thomwolf's avatar
thomwolf committed
824

thomwolf's avatar
thomwolf committed
825
826
827
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
828

thomwolf's avatar
thomwolf committed
829
830
831
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
832

833
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
834
835


836
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
837
    """Creates a random float32 tensor"""
838
839
840
841
842
843
844
845
846
847
848
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

849
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
850
851


852
@require_torch
thomwolf's avatar
thomwolf committed
853
class ModelUtilsTest(unittest.TestCase):
854
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
855
    def test_model_from_pretrained(self):
856
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
872
873
874
875
876
877


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
878
    def test_top_k_top_p_filtering(self):
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))