test_utils.py 139 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import copy
18
import inspect
19
import tempfile
20
import unittest
21
import warnings
22

23
import numpy as np
24
from parameterized import parameterized
25

26
from transformers import is_torch_available, pipeline, set_seed
27
from transformers.testing_utils import (
28
    is_flaky,
29
    require_accelerate,
30
    require_quanto,
31
32
33
34
35
    require_torch,
    require_torch_multi_accelerator,
    slow,
    torch_device,
)
36

37
from ..test_modeling_common import floats_tensor, ids_tensor
38
from .test_framework_agnostic import GenerationIntegrationTestsMixin
39

40
41
42
43

if is_torch_available():
    import torch

44
    from transformers import (
45
        AutoModelForCausalLM,
46
        AutoModelForSeq2SeqLM,
47
48
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
49
        AutoProcessor,
50
        AutoTokenizer,
51
        BartForCausalLM,
52
53
54
55
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
56
        ImageGPTForCausalImageModeling,
57
        SpeechEncoderDecoderModel,
58
    )
59
    from transformers.cache_utils import DynamicCache, QuantoQuantizedCache
60
61
62
63
64
65
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        DisjunctiveConstraint,
66
67
68
69
        GenerateBeamDecoderOnlyOutput,
        GenerateBeamEncoderDecoderOutput,
        GenerateDecoderOnlyOutput,
        GenerateEncoderDecoderOutput,
70
        GenerationConfig,
71
72
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
73
        LogitsProcessorList,
74
        MaxLengthCriteria,
75
        MinLengthLogitsProcessor,
76
77
78
79
80
        PhrasalConstraint,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
81
82
        WatermarkDetector,
        WatermarkingConfig,
83
    )
84
    from transformers.generation.utils import _speculative_sampling
85
86
87
88
89


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
90
    input_name = "input_ids"
91
    max_new_tokens = 3
92

93
    def _get_input_ids_and_config(self, batch_size=2):
94
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
95
        input_ids = inputs_dict[self.input_name]
96

97
        input_ids = input_ids[:batch_size]
98
99
100

        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
101
102
103
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
104
        attention_mask = torch.ones_like(input_ids, dtype=torch.long)
105

106
107
108
109
110
        # It is important set set the eos_token_id to None to ensure that no sequences
        # shorter than `max_length` can be generated
        config.eos_token_id = None
        config.forced_eos_token_id = None

111
        return config, input_ids, attention_mask
112
113

    @staticmethod
114
    def _get_logits_processor_and_warper_kwargs(
115
116
117
118
        input_length,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
    ):
119
120
121
        process_kwargs = {
            "bad_words_ids": [[1, 0]],
            "repetition_penalty": 1.2,
122
            "remove_invalid_values": True,
123
        }
124
125
126
127
        # NoRepeatNGramLogitsProcessor + forced tokens may result in no valid continuations
        if forced_bos_token_id is None and forced_eos_token_id is None:
            process_kwargs["no_repeat_ngram_size"] = 2

128
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
129
        return process_kwargs, warp_kwargs
130
131

    @staticmethod
132
    def _get_beam_kwargs(num_return_sequences=1):
133
134
135
136
137
138
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
139
        return beam_kwargs
140

141
    @staticmethod
142
    def _get_diverse_beam_kwargs(num_return_sequences=1):
143
144
145
146
147
148
149
150
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
151
        return beam_kwargs
152

153
    @staticmethod
154
    def _get_constrained_beam_kwargs(num_return_sequences=1):
155
156
157
158
159
160
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
161
        return beam_kwargs
162

163
    @staticmethod
164
165
166
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
167
        encoder = model.get_encoder()
168
169
170
171
172
173
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
174
175
176
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
177
178
179
        generation_config = copy.deepcopy(model.generation_config)
        model._prepare_special_tokens(generation_config)
        input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
180
181
182
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

183
184
185
186
187
188
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
189
        output_logits=False,
190
191
192
193
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
194
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
195
196
197
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
198
199
        )

200
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
201
202
203
204
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
205
            max_new_tokens=self.max_new_tokens,
206
207
208
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
209
            output_logits=output_logits,
210
211
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
212
            **model_kwargs,
213
214
        )

215
        return output_generate
216
217
218
219
220
221
222
223
224
225

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        num_return_sequences,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
226
        output_logits=False,
227
228
229
230
231
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
232
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
233
234
235
236
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
237
            max_new_tokens=self.max_new_tokens,
238
239
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
240
            output_logits=output_logits,
241
242
243
244
245
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **logits_warper_kwargs,
            **process_kwargs,
246
            **model_kwargs,
247
248
        )

249
        return output_generate
250
251
252
253
254
255
256
257
258

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
259
        output_logits=False,
260
261
262
263
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
264
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
265
266
267
        output_generate = model.generate(
            input_ids,
            do_sample=False,
268
            max_new_tokens=self.max_new_tokens,
269
            output_scores=output_scores,
270
            output_logits=output_logits,
271
272
273
274
275
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
276
            **model_kwargs,
277
278
        )

279
        return output_generate
280
281
282
283
284
285
286
287
288

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_warper_kwargs,
        output_scores=False,
289
        output_logits=False,
290
291
292
293
294
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
295
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
296
297
298
        output_generate = model.generate(
            input_ids,
            do_sample=True,
299
            max_new_tokens=self.max_new_tokens,
300
            output_scores=output_scores,
301
            output_logits=output_logits,
302
303
304
305
306
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_warper_kwargs,
307
            **model_kwargs,
308
309
        )

310
        return output_generate
311
312
313
314
315
316
317
318
319

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
320
        output_logits=False,
321
322
323
324
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
325
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
326
327
328
        output_generate = model.generate(
            input_ids,
            do_sample=False,
329
            max_new_tokens=self.max_new_tokens,
330
            output_scores=output_scores,
331
            output_logits=output_logits,
332
333
334
335
336
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            **beam_kwargs,
            **logits_process_kwargs,
337
            **model_kwargs,
338
339
        )

340
        return output_generate
341

342
343
344
345
346
347
348
349
350
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        constraints,
        beam_kwargs,
        logits_process_kwargs,
        output_scores=False,
351
        output_logits=False,
352
353
354
355
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
356
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
357
358
359
        output_generate = model.generate(
            input_ids,
            do_sample=False,
360
            max_new_tokens=self.max_new_tokens,
361
            output_scores=output_scores,
362
            output_logits=output_logits,
363
364
365
366
367
368
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
369
            **model_kwargs,
370
371
        )

372
        return output_generate
373

374
375
376
377
378
379
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        output_scores=False,
380
        output_logits=False,
381
382
383
384
385
386
387
388
389
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

390
        logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
391
392
393
394
395
396
397
398
399
400
            input_ids.shape[-1],
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
401
            max_new_tokens=self.max_new_tokens,
402
403
404
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
405
            output_logits=output_logits,
406
407
408
409
410
411
            return_dict_in_generate=return_dict_in_generate,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

412
        return output_generate
413

414
415
    def test_greedy_generate(self):
        for model_class in self.all_generative_model_classes:
416
            config, input_ids, attention_mask = self._get_input_ids_and_config()
417

418
            model = model_class(config).to(torch_device).eval()
419
            output_generate = self._greedy_generate(model=model, input_ids=input_ids, attention_mask=attention_mask)
420

421
422
423
424
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
425

426
427
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
428
            config, input_ids, attention_mask = self._get_input_ids_and_config()
429

430
431
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
432
            output_generate = self._greedy_generate(
433
434
435
436
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
437
                output_logits=True,
438
439
440
441
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
442
443

            if model.config.is_encoder_decoder:
444
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
445
446
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
447
448
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
449
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
450
451
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
452
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
453

454
            self._check_outputs(output_generate, input_ids, model.config)
455
456
457

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
458
            config, input_ids, attention_mask = self._get_input_ids_and_config()
459
460

            if not hasattr(config, "use_cache"):
461
                self.skipTest("This model doesn't support caching")
462
463

            config.use_cache = True
464
            config.is_decoder = True
465
            model = model_class(config).to(torch_device).eval()
466
            output_generate = self._greedy_generate(
467
468
                model=model,
                input_ids=input_ids,
469
                attention_mask=attention_mask,
470
                output_scores=True,
471
                output_logits=True,
472
473
474
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
475
            )
476

477
478
479
480
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
481
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
482
483
484

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
485
            config, input_ids, attention_mask = self._get_input_ids_and_config()
486

487
488
            model = model_class(config).to(torch_device).eval()
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
489
490
491
492
493
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
            )

494
            output_generate = self._sample_generate(
495
496
497
498
499
500
501
502
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                num_return_sequences=1,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )

503
504
505
506
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
507

508
509
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
510
            config, input_ids, attention_mask = self._get_input_ids_and_config()
511

512
513
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
514

515
            process_kwargs, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(
516
517
518
                input_ids.shape[-1],
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
519
            )
520

521
            output_generate = self._sample_generate(
522
523
                model=model,
                input_ids=input_ids,
524
                attention_mask=attention_mask,
525
526
527
528
                num_return_sequences=2,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
529
                output_logits=True,
530
531
532
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
533
534
535
            )

            if model.config.is_encoder_decoder:
536
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
537
538
                self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
                # Retrocompatibility check
539
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
540
            else:
541
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
542
543
                self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
                # Retrocompatibility check
544
545
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

546
            self._check_outputs(output_generate, input_ids, model.config, num_return_sequences=2)
547
548
549

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
550
            config, input_ids, attention_mask = self._get_input_ids_and_config()
551

552
            model = model_class(config).to(torch_device).eval()
553

554
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
555
556
557
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
558
            )
559
            beam_kwargs = self._get_beam_kwargs()
560

561
            output_generate = self._beam_search_generate(
562
563
                model=model,
                input_ids=input_ids,
564
                attention_mask=attention_mask,
565
566
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
567
            )
568

569
570
571
572
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
573
574
575

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
576
            config, input_ids, attention_mask = self._get_input_ids_and_config()
577
578

            # disable cache
579
            config.use_cache = False
580

581
            model = model_class(config).to(torch_device).eval()
582
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
583
584
585
586
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )
587
588
            beam_kwargs = self._get_beam_kwargs()
            output_generate = self._beam_search_generate(
589
590
                model=model,
                input_ids=input_ids,
591
                attention_mask=attention_mask,
592
593
594
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
595
                output_logits=True,
596
597
598
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
599
600
            )
            if model.config.is_encoder_decoder:
601
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
602
603
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
604
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
605
            else:
606
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
607
608
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
609
610
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

611
612
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
613
614
615
616
617
            )

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
618
            config, input_ids, attention_mask = self._get_input_ids_and_config()
619
620

            if not hasattr(config, "use_cache"):
621
                self.skipTest("This model doesn't support caching")
622
623

            model = model_class(config).to(torch_device).eval()
624
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
625
626
627
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
628
629
            )

630
            beam_kwargs = self._get_beam_kwargs()
631
632

            config.use_cache = True
633
            config.is_decoder = True
634
            model = model_class(config).to(torch_device).eval()
635
            output_generate = self._beam_search_generate(
636
637
638
639
640
641
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
642
                output_logits=True,
643
644
645
646
647
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

648
649
650
651
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
652
653
654
            self._check_outputs(
                output_generate, input_ids, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_beams"]
            )
655

656
    @require_accelerate
657
    @require_torch_multi_accelerator
658
659
    def test_model_parallel_beam_search(self):
        for model_class in self.all_generative_model_classes:
660
661
662
            if "xpu" in torch_device:
                return unittest.skip("device_map='auto' does not work with XPU devices")

663
664
665
            if model_class._no_split_modules is None:
                continue

666
            config, input_ids, attention_mask = self._get_input_ids_and_config()
667
668
669
670
671
672
673
674
675

            model = model_class(config).eval()
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)
                new_model = model_class.from_pretrained(tmp_dir, device_map="auto")

                new_model.generate(
                    input_ids,
                    attention_mask=attention_mask,
676
                    max_new_tokens=self.max_new_tokens,
677
678
679
                    num_beams=2,
                )

680
681
    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
682
            config, input_ids, attention_mask = self._get_input_ids_and_config()
683

684
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
685

686
            model = model_class(config).to(torch_device).eval()
687
            beam_kwargs = self._get_beam_kwargs()
688

689
            output_generate = self._beam_sample_generate(
690
691
                model=model,
                input_ids=input_ids,
692
                attention_mask=attention_mask,
693
694
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
695
            )
696

697
698
699
700
701
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

702
703
704
705
706
707
708
709
710
711
712
713
            if "inputs_embeds" in set(inspect.signature(model.prepare_inputs_for_generation).parameters):
                input_embeds = model.get_input_embeddings()(input_ids)
                beam_kwargs.update({"inputs_embeds": input_embeds})
                output_generate2 = self._beam_sample_generate(
                    model=model,
                    input_ids=None,
                    attention_mask=attention_mask,
                    beam_kwargs=beam_kwargs,
                    logits_warper_kwargs=logits_warper_kwargs,
                )

                torch.testing.assert_close(output_generate[:, input_embeds.shape[1] :], output_generate2)
714
715
716

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
717
            config, input_ids, attention_mask = self._get_input_ids_and_config()
718
719

            # disable cache
720
            config.use_cache = False
721

722
            model = model_class(config).to(torch_device).eval()
723
724
            _, logits_warper_kwargs = self._get_logits_processor_and_warper_kwargs(input_ids.shape[-1])
            beam_kwargs = self._get_beam_kwargs()
725

726
            output_generate = self._beam_sample_generate(
727
728
729
730
731
732
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
733
                output_logits=True,
734
735
736
737
738
739
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
740
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
741
742
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
743
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
744
            else:
745
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
746
747
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
748
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
749

750
751
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
752
            )
753

754
    def test_generate_without_input_ids(self):
755
        config, _, _ = self._get_input_ids_and_config()
756

757
758
759
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
760

761
762
763
764
        # hack in case they are equal, otherwise the attn mask will be [0]
        if config.bos_token_id == config.pad_token_id:
            config.pad_token_id = None

765
766
767
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
768

769
770
771
            output_ids_generate = model.generate(
                do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True
            )
772
            self.assertIsNotNone(output_ids_generate)
773

774
775
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
776
            config, input_ids, attention_mask = self._get_input_ids_and_config()
777

778
            model = model_class(config).to(torch_device).eval()
779
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
780
781
782
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
783
784
785
            )

            # check `generate()` and `group_beam_search()` are equal
786
787
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
788
789
                model=model,
                input_ids=input_ids,
790
                attention_mask=attention_mask,
791
792
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
793
            )
794
795
796
797
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
798

799
            # check `group_beam_search` for higher than 1 `num_return_sequences`
800
            num_return_sequences = 2
801
802
            beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences)
            output_generate = self._group_beam_search_generate(
803
804
805
806
807
808
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
809
810
811
812
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
813

814
815
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
816
            config, input_ids, attention_mask = self._get_input_ids_and_config()
817
            config.use_cache = False
818

819
            model = model_class(config).to(torch_device).eval()
820
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
821
822
823
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
824
825
            )

826
827
            beam_kwargs = self._get_diverse_beam_kwargs()
            output_generate = self._group_beam_search_generate(
828
829
                model=model,
                input_ids=input_ids,
830
                attention_mask=attention_mask,
831
832
833
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
834
                output_logits=True,
835
836
837
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
838
839
            )
            if model.config.is_encoder_decoder:
840
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
841
842
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
843
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
844
            else:
845
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
846
847
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
848
849
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

850
851
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
852
853
            )

854
855
    # TODO: @gante
    @is_flaky()
856
857
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
858
            config, input_ids, attention_mask = self._get_input_ids_and_config()
859
860
861

            model = model_class(config).to(torch_device).eval()

862
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
863
864
865
866
867
868
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
869
870
            min_id = 3
            max_id = config.vocab_size
871

872
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
873
874
875
876
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

877
878
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
879
880
881
882
883
884
885
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
886
887
888
889
890
891

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])

892
893
894
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

895
            # check`constrained_beam_search` for higher than 1 `num_return_sequences`
896
            # Sample constraints
897
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
898
899
900
901
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

902
            beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2)
903

904
            output_generate = self._constrained_beam_search_generate(
905
906
907
908
909
910
911
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
            )
912
913
914
915
916

            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
917
918
919
920
921
922

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
923
            config, input_ids, attention_mask = self._get_input_ids_and_config()
924
925
926
927
928

            # disable cache
            config.use_cache = False

            model = model_class(config).to(torch_device).eval()
929
            logits_process_kwargs, _ = self._get_logits_processor_and_warper_kwargs(
930
931
932
933
934
935
                input_ids.shape[-1],
                config.forced_bos_token_id,
                config.forced_eos_token_id,
            )

            # Sample constraints
936
937
            min_id = 3
            max_id = model.config.vocab_size
938
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
939
940
941
942
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

943
944
            beam_kwargs = self._get_constrained_beam_kwargs()
            output_generate = self._constrained_beam_search_generate(
945
946
947
948
949
950
951
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
952
                output_logits=True,
953
954
955
956
957
958
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
959
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
960
961
                self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput)
                # Retrocompatibility check
962
963
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
964
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
965
966
                self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput)
                # Retrocompatibility check
967
968
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

969
970
            self._check_outputs(
                output_generate, input_ids, model.config, num_return_sequences=beam_kwargs["num_beams"]
971
972
            )

973
974
975
    def test_contrastive_generate(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
976
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
977
                self.skipTest("Won't fix: old model with different cache format")
978

979
            config, input_ids, attention_mask = self._get_input_ids_and_config()
980
981
982

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
983
                self.skipTest("This model doesn't support caching")
984
985
986
987
988
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
989
            output_generate = self._contrastive_generate(
990
                model=model, input_ids=input_ids, attention_mask=attention_mask
991
            )
992
993
994
995
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
996
997
998
999

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1000
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1001
                self.skipTest("Won't fix: old model with different cache format")
1002

1003
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1004
1005
1006

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1007
                self.skipTest("This model doesn't support caching")
1008
1009
1010
1011
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
1012
            output_generate = self._contrastive_generate(
1013
1014
1015
1016
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                output_scores=True,
1017
                output_logits=True,
1018
1019
1020
1021
1022
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

1023
1024
1025
1026
            if model.config.is_encoder_decoder:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + 1)
            else:
                self.assertTrue(output_generate.sequences.shape[-1] == self.max_new_tokens + input_ids.shape[-1])
1027
            self._check_outputs(output_generate, input_ids, model.config, use_cache=True)
1028

1029
1030
1031
    def test_contrastive_generate_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
1032
1033
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
                self.skipTest("Won't fix: old model with different cache format")
tomeras91's avatar
tomeras91 committed
1034
            if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode", "jamba"]):
1035
                self.skipTest("TODO: fix me")
1036

1037
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1038
1039
1040

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1041
                self.skipTest("This model doesn't support caching")
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=True,
1054
                max_new_tokens=self.max_new_tokens,
1055
1056
1057
1058
1059
1060
1061
1062
                attention_mask=attention_mask,
            )

            high_output = model.generate(
                input_ids,
                top_k=4,
                penalty_alpha=0.6,
                low_memory=False,
1063
                max_new_tokens=self.max_new_tokens,
1064
1065
1066
1067
                attention_mask=attention_mask,
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    def test_beam_search_low_memory(self):
        # Check that choosing 'low_memory' does not change the model output
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bloom",
                    "ctrl",
                    "gptbigcode",
                    "transo_xl",
                    "xlnet",
                    "cpm",
tomeras91's avatar
tomeras91 committed
1082
                    "jamba",
1083
1084
1085
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")
1086
            config, input_ids, _ = self._get_input_ids_and_config(batch_size=2)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
            # batch_size=1 is ok, but batch_size>1 will cause non-identical output

            config.use_cache = True
            config.is_decoder = True

            # test output equality of low versus high memory
            model = model_class(config).to(torch_device).eval()

            low_output = model.generate(input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=True)

            high_output = model.generate(
                input_ids, max_new_tokens=8, num_beams=5, early_stopping=True, low_memory=False
            )
            self.assertListEqual(low_output.tolist(), high_output.tolist())

1102
    @parameterized.expand([("random",), ("same",)])
1103
    @is_flaky()  # Read NOTE (1) below. If there are API issues, all attempts will fail.
1104
    def test_assisted_decoding_matches_greedy_search(self, assistant_type):
1105
        # This test ensures that the assisted generation does not introduce output changes over greedy search.
1106
1107
1108
1109
1110
        # NOTE (1): The sentence above is true most of the time, there is a tiny difference in the logits due to matmul
        # shape differences -- and it may result in a different output. The input shape difference happens in the
        # main model, that runs the forward pass with several candidates at once (as opposed to generating one token at
        # a time). See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info.
        # NOTE (2): It breaks the pattern in the tests above, for multiple reasons:
1111
        # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to
1112
        # prepare the assistant encoder outputs in the main generate body);
1113
1114
        # - assisted_decoding does not support `use_cache = False`
        # - assisted_decoding does not support `batch_size > 1`
1115
1116
1117

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1118
                self.skipTest("Won't fix: old model with different cache format")
1119
1120
            if any(
                model_name in model_class.__name__.lower()
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1131
            ):
1132
                self.skipTest("May fix in the future: need model-specific fixes")
1133

1134
            # enable cache
1135
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1136

1137
1138
1139
            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")
1140

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1156
                "output_logits": True,
1157
1158
1159
1160
1161
1162
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1163
1164
1165
1166
1167
1168
1169
            # test with the same assistant model or randomly init one
            # in the first case all candidate tokens are accepted, in the second none is accepted
            # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :)
            if assistant_type == "random":
                assistant_model = model_class(config).to(torch_device).eval()
            else:
                assistant_model = model
1170
1171
1172
1173
1174
1175
1176
1177
1178
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs.update({"assistant_model": assistant_model})
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_assisted.sequences.tolist())
            for output in (output_greedy, output_assisted):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
1179

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    @is_flaky()
    def test_prompt_lookup_decoding_matches_greedy_search(self):
        # This test ensures that the prompt lookup generation does not introduce output changes over greedy search.
        # This test is mostly a copy of test_assisted_decoding_matches_greedy_search

        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
                self.skipTest("Won't fix: old model with different cache format")
            if any(
                model_name in model_class.__name__.lower()
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
            ):
                self.skipTest("May fix in the future: need model-specific fixes")

            # enable cache
1204
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                self.skipTest("This model doesn't support caching")

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of
            #    prompt lookup is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": False,
                "output_scores": True,
1225
                "output_logits": True,
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }

            output_greedy = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            generation_kwargs.update({"prompt_lookup_num_tokens": 2})  # see b)
            output_prompt_lookup = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

            # The two outputs must match and their shape must be as expected
            self.assertListEqual(output_greedy.sequences.tolist(), output_prompt_lookup.sequences.tolist())
            for output in (output_greedy, output_prompt_lookup):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1241
    def test_assisted_decoding_sample(self):
1242
1243
1244
        # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not
        # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with
        # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
1245
1246
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1247
                self.skipTest("Won't fix: old model with different cache format")
1248
1249
            if any(
                model_name in model_class.__name__.lower()
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
                for model_name in [
                    "bigbirdpegasus",
                    "led",
                    "mega",
                    "speech2text",
                    "git",
                    "prophetnet",
                    "seamlessm4t",
                    "clvp",
                ]
1260
            ):
1261
                self.skipTest("May fix in the future: need model-specific fixes")
1262
1263

            # enable cache
1264
            config, input_ids, attention_mask = self._get_input_ids_and_config(batch_size=1)
1265
1266
1267

            # NOTE: assisted generation only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
1268
                self.skipTest("This model doesn't support caching")
1269
1270
1271
1272

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
            # Sets assisted generation arguments such that:
            # a) no EOS is generated, to ensure generation doesn't break early
            # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of
            #    the assistant model is correct
            # c) there are at least two forward passes in the main model, to ensure the input preparation of
            #    the main model is correct
            assistant_model = model
            assistant_model.generation_config.num_assistant_tokens = 2  # see b)
            assistant_model.generation_config.num_assistant_tokens_schedule = "constant"  # see b)
            generation_kwargs = {
                "eos_token_id": -1,  # see a)
                "max_new_tokens": 4,  # see c)
                "num_beams": 1,
                "do_sample": True,
                "assistant_model": assistant_model,
                "output_scores": True,
1289
                "output_logits": True,
1290
1291
1292
1293
1294
                "output_hidden_states": True,
                "output_attentions": True,
                "return_dict_in_generate": True,
            }
            output_assisted = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
1295
1296
1297

            self._check_outputs(output_assisted, input_ids, model.config, use_cache=True)

1298
1299
1300
1301
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
1302
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1303
1304
1305
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1306
            model = model_class(config).to(torch_device)
1307
1308

            head_masking = {
1309
1310
1311
1312
1313
1314
1315
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1316
1317
1318
1319
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1320
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1321
1322
1323
1324
1325
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1326
                    attention_mask=attention_mask,
1327
1328
1329
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1330
                    remove_invalid_values=True,
1331
1332
1333
1334
1335
1336
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1337
    def test_left_padding_compatibility(self):
1338
1339
        # NOTE: left-padding results in small numerical differences. This is expected.
        # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
1340

1341
1342
1343
1344
1345
1346
1347
        # First, filter out models that don't support left padding
        # - The model must have generative capabilities
        if len(self.all_generative_model_classes) == 0:
            self.skipTest(reason="No generative architecture available for this model.")

        # - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
        decoder_only_classes = []
1348
        for model_class in self.all_generative_model_classes:
1349
            config, _, _ = self._get_input_ids_and_config()
1350
            if config.is_encoder_decoder:
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
                continue
            else:
                decoder_only_classes.append(model_class)
        if len(decoder_only_classes) == 0:
            self.skipTest(reason="No decoder-only architecture available for this model.")

        # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
        #   added support for it yet. We skip these models for now.
        has_encoder_attributes = any(
            attr_name
            for attr_name in config.to_dict().keys()
            if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
        )
        if has_encoder_attributes:
            self.skipTest(
                reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
            )

        # Then, test left-padding
        def _prepare_model_kwargs(input_ids, attention_mask, signature):
            model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
            if "position_ids" in signature:
                position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                model_kwargs["position_ids"] = position_ids
            if "cache_position" in signature:
                cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
                model_kwargs["cache_position"] = cache_position
            return model_kwargs

        for model_class in decoder_only_classes:
1382
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1383
1384
1385
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
            # Without padding
            model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
            next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

            # With left-padding (length 32)
            pad_size = (input_ids.shape[0], 32)
            padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
            padded_input_ids = torch.cat((padding, input_ids), dim=1)
            padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
            model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
            next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]

            # They should result in very similar logits
            self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=1e-5))
1400

1401
1402
1403
1404
1405
1406
1407
1408
    def test_past_key_values_format(self):
        # Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test. Having a
        # standard KV cache format is important for a consistent API (and for advanced generation methods).
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
1409
                self.skipTest("This model doesn't support caching")
1410
1411
1412
1413
1414
1415
1416
1417

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
1418
                self.skipTest("This model doesn't return `past_key_values`")
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "decoder_attention_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            # Encoder-Decoder checks
            if config.is_encoder_decoder:
                encoder_num_attention_heads = config.encoder_attention_heads
                encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads
                batch_size, seq_length = inputs["decoder_input_ids"].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[i]), 4)  # K V for the decoder + K V for the encoder = 4
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    # The sequence length for the encoder K V depends on the model. Since it is not manipulated in
                    # autoregressive generation, I'm keeping the test general and not checking the 3rd dim
                    self.assertEqual(
                        (past_kv[i][2].shape[0], past_kv[i][2].shape[1], past_kv[i][2].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )
                    self.assertEqual(
                        (past_kv[i][3].shape[0], past_kv[i][3].shape[1], past_kv[i][3].shape[3]),
                        (batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim),
                    )

            # Decoder-only checks
            else:
                # TODO: this line is only needed because of imagegpt, where "pixel_values" = "input_ids". Fix the
                # tests in imagegpt such that `prepare_config_and_inputs_for_common` returns the later (and the other
                # tests use it)
                key = "input_ids" if "input_ids" in inputs else "pixel_values"
                batch_size, seq_length = inputs[key].shape
                for i in range(num_hidden_layers):
                    self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                    self.assertEqual(
                        past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )
                    self.assertEqual(
                        past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                    )

1472
1473
1474
1475
    def test_generate_from_inputs_embeds_decoder_only(self):
        # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids`
        # if fails, you should probably update the `prepare_inputs_for_generation` function
        for model_class in self.all_generative_model_classes:
1476
            config, input_ids, _ = self._get_input_ids_and_config()
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

            # Ignore:
            # a) eos (to always output 20 tokens) and pad (so we don't try to infer the attn mask from the input_ids,
            #   which would cause a mismatch),
            config.pad_token_id = config.eos_token_id = -1
            # b) embedding scaling, the scaling factor applied after embeding from input_ids (requires knowledge of the
            #   variable that holds the scaling factor, which is model-dependent)
            if hasattr(config, "scale_embedding"):
                config.scale_embedding = False

            # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the
            # decoder)
            if config.is_encoder_decoder:
                continue

            # Skip models without explicit support
            model = model_class(config).to(torch_device).eval()
            if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys():
                continue

            # Traditional way of generating text
            outputs_from_ids = model.generate(input_ids)
            self.assertEqual(outputs_from_ids.shape, (2, 20))

            # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output)
            inputs_embeds = model.get_input_embeddings()(input_ids)
            outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
            self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

            # But if we pass different inputs_embeds, we should get different outputs
            torch.manual_seed(0)
            random_embeds = torch.rand_like(inputs_embeds)
            outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
            with self.assertRaises(AssertionError):
                self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

            # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
            outputs_from_embeds_wo_ids = model.generate(
                inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
            )
            self.assertListEqual(
                outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
1519
                outputs_from_embeds_wo_ids.tolist(),
1520
1521
            )

1522
1523
1524
1525
    def test_generate_continue_from_past_key_values(self):
        # Tests that we can continue generating from past key values, returned from a previous `generate` call
        for model_class in self.all_generative_model_classes:
            if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]):
1526
                self.skipTest("Won't fix: old model with unique inputs/caches/other")
1527
            if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]):
1528
                self.skipTest("TODO: needs modeling or test input preparation fixes for compatibility")
1529
1530
1531
1532

            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            if not hasattr(config, "use_cache"):
1533
                self.skipTest("This model doesn't support caching")
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

            # Let's make it always:
            # 1. use cache (for obvious reasons)
            # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which
            #    would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the
            #    continuation would force it to generate beyond an EOS token)
            # 3. ignore `token_type_ids` for simplicity
            # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is
            #    active by default on some models
            config.use_cache = True
            if "token_type_ids" in inputs:
                del inputs["token_type_ids"]

            model = model_class(config).to(torch_device)
            model.eval()
            model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1
            model.generation_config.forced_eos_token_id = None

1552
            # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format)
1553
1554
            outputs = model(**inputs)
            if "past_key_values" not in outputs:
1555
                self.skipTest("This model doesn't return `past_key_values`")
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

            # Traditional way of generating text, with `return_dict_in_generate` to return the past key values
            outputs = model.generate(**inputs, do_sample=False, max_new_tokens=4, return_dict_in_generate=True)

            # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the
            # inputs may need to be tweaked across `generate` calls (like the attention mask).
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=3, return_dict_in_generate=True)

            # Continue from the tokens generated above, preparing the inputs accordingly
            inputs["past_key_values"] = outputs_cached.past_key_values
            new_attention_len = outputs_cached.sequences.shape[-1]
            if config.is_encoder_decoder:
                inputs["decoder_input_ids"] = outputs_cached.sequences
                if "decoder_attention_mask" in inputs:
                    inputs["decoder_attention_mask"] = torch.nn.functional.pad(
                        inputs["decoder_attention_mask"],
                        (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            else:
                inputs["input_ids"] = outputs_cached.sequences
                if "attention_mask" in inputs:
                    inputs["attention_mask"] = torch.nn.functional.pad(
                        inputs["attention_mask"],
                        (0, new_attention_len - inputs["attention_mask"].shape[1]),
                        mode="constant",
                        value=1,
                    )
            outputs_cached = model.generate(**inputs, do_sample=False, max_new_tokens=1, return_dict_in_generate=True)

            # The two sets of generated text and past kv should be equal to each other
            self.assertListEqual(outputs.sequences.tolist(), outputs_cached.sequences.tolist())
            for layer_idx in range(len(outputs_cached.past_key_values)):
                for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            outputs.past_key_values[layer_idx][kv_idx],
                            outputs_cached.past_key_values[layer_idx][kv_idx],
                        )
                    )

1598
1599
1600
1601
1602
1603
1604
1605
1606
    @parameterized.expand([(1, False), (1, True), (4, False)])
    def test_new_cache_format(self, num_beams, do_sample):
        # Tests that generating with the new format is exactly the same as the legacy one (for models that support it).
        # 馃憠 tests with and without beam search so that we can test with and without cache reordering.
        # 馃憠 tests with and without sampling so we can cover the most common use cases.
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_cache_class:
                self.skipTest("This model does not support the new cache format")

1607
            config, input_ids, attention_mask = self._get_input_ids_and_config()
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "do_sample": do_sample,
                "num_beams": num_beams,
                "num_return_sequences": num_beams,
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            # Sets seed before calling `generate` for the case with do_sample=True
            seed = torch.randint(0, 1000000, (1,)).item()
            set_seed(seed)
            legacy_results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            set_seed(seed)
            new_results = model.generate(
                input_ids, attention_mask=attention_mask, past_key_values=DynamicCache(), **generation_kwargs
            )

            # The two sets of generated sequences must match, despite the cache format between forward passes being
            # different
            self.assertListEqual(legacy_results.sequences.tolist(), new_results.sequences.tolist())
            self.assertTrue(isinstance(legacy_results.past_key_values, tuple))
            self.assertTrue(isinstance(new_results.past_key_values, DynamicCache))

            # The contents of the two caches, when converted to the same format (in both directions!), must match
            legacy_cache = legacy_results.past_key_values
            new_cache_converted = new_results.past_key_values.to_legacy_cache()
            for layer_idx in range(len(legacy_cache)):
                for kv_idx in range(len(legacy_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            legacy_cache[layer_idx][kv_idx],
                            new_cache_converted[layer_idx][kv_idx],
                        )
                    )

            new_cache = new_results.past_key_values
            legacy_cache_converted = DynamicCache.from_legacy_cache(legacy_results.past_key_values)
            for layer_idx in range(len(new_cache)):
                for kv_idx in range(len(new_cache[layer_idx])):
                    self.assertTrue(
                        torch.allclose(
                            new_cache[layer_idx][kv_idx],
                            legacy_cache_converted[layer_idx][kv_idx],
                        )
                    )

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    @require_quanto
    def test_generate_with_quant_cache(self):
        for model_class in self.all_generative_model_classes:
            if not model_class._supports_quantized_cache:
                self.skipTest("This model does not support the quantized cache format")

            config, input_ids, attention_mask = self._get_input_ids_and_config()
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            generation_kwargs = {
                "max_new_tokens": 5,
                "cache_implementation": "quantized",
                # careful with group size, should be divisor of model's hidden size
                "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128},
                "return_dict_in_generate": True,  # Required to return `past_key_values`
            }

            results = model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)
            self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache))

            # passing past key values of different type should raise Error
            with self.assertRaises(ValueError):
                model.generate(
                    input_ids, attention_mask=attention_mask, past_key_valyes=DynamicCache(), **generation_kwargs
                )

            # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense
            generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128}
            with self.assertRaises(ValueError):
                model.generate(input_ids, attention_mask=attention_mask, **generation_kwargs)

1691
1692
1693
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
1694

1695
1696
1697
1698
1699
1700
1701
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

1702
1703
1704
        # unprocessed logits
        self._check_logits(num_sequences_in_output, output.logits, config=config)

1705
1706
1707
        # Attentions
        if config.is_encoder_decoder:
            # encoder
1708
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1734
1735
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

tomeras91's avatar
tomeras91 committed
1760
        # Past Key Value States -- a few notes here:
1761
1762
        # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
        # 2. Some old models still return `output.past_key_values` even without `use_cache=True`
tomeras91's avatar
tomeras91 committed
1763
1764
1765
        # 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
        # complete
        models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba")
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        has_standard_cache = not any(
            model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
        )
        if use_cache and has_standard_cache:
            past_key_values = output.past_key_values
            past_sequence_length = output.sequences.shape[-1] - 1
            self._check_past_key_values_for_generate(
                num_sequences_in_output,
                past_key_values,
                seq_length=past_sequence_length,
                config=config,
            )

1779
1780
1781
1782
1783
1784
    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

1785
1786
1787
1788
1789
1790
1791
1792
    def _check_logits(self, batch_size, scores, config):
        self.assertIsInstance(scores, tuple)
        self.assertListEqual([iter_scores.shape[0] for iter_scores in scores], [batch_size] * len(scores))
        # vocabulary difference equal to one (imagegptmodel?) or zero (all other models)
        vocab_diff = config.vocab_size - scores[0].shape[-1]
        self.assertTrue(vocab_diff in [0, 1])
        self.assertListEqual([config.vocab_size - score.shape[-1] for score in scores], [vocab_diff] * len(scores))

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1817
1818
1819
1820
1821
1822
1823
1824
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1843

1844
1845
1846
1847
1848
1849
1850
1851
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
    def _check_past_key_values_for_generate(self, batch_size, past_key_values, seq_length, config, num_beam_groups=1):
        self.assertIsInstance(past_key_values, tuple)
        self.assertListEqual(
            [isinstance(iter_past_key_values, tuple) for iter_past_key_values in past_key_values],
            [True] * len(past_key_values),
        )

        # (batch, head, seq_length, head_features)
        expected_shape = (
            batch_size * num_beam_groups,
            config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads,
            seq_length,
            config.hidden_size // config.num_attention_heads,
        )
        # check shape key, value
        self.assertListEqual(
            [layer_past_key_values[0].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )
        self.assertListEqual(
            [layer_past_key_values[1].shape for layer_past_key_values in past_key_values],
            [expected_shape] * len(past_key_values),
        )

1876
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1877
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1878
1879
        # set to same device. we don't care what device.

1880
1881
1882
1883
1884
1885
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1886
1887
1888
1889
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1890
1891
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1892
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1893
            if subseq == shorter:
1894
1895
1896
1897
1898
                flag = True
                break

        self.assertTrue(flag)

1899
1900
1901

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    def test_speculative_sampling(self):
        # assume vocab size 10, input length 5 + 3 generated candidates
        candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]])  # input tokens
        candidate_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # generated 4
                    [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0],  # generated 5
                ]
            ]
        )
        candidate_length = 3
        inf = float("inf")
        new_logits = torch.tensor(
            [
                [
                    [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 1
                    [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # accepts 4
                    [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf],  # rejects 5, accepts 8
                    [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0],  # N/A
                ]
            ]
        )
        last_assistant_token_is_eos = False
        validated_tokens, n_matches = _speculative_sampling(
            candidate_input_ids,
            candidate_logits,
            candidate_length,
            new_logits,
            last_assistant_token_is_eos,
        )
        self.assertTrue(n_matches.item() == 2)
        self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8])

1937
1938

@require_torch
1939
1940
1941
1942
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
1943
            "AutoModelForCausalLM": AutoModelForCausalLM,
1944
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
1945
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
1946
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
1947
1948
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
1949
            "create_tensor_fn": torch.tensor,
1950
            "floats_tensor": floats_tensor,
1951
1952
1953
            "return_tensors": "pt",
        }

1954
1955
    @slow
    def test_diverse_beam_search(self):
1956
        # PT-only test: TF doesn't have a diverse beam search implementation
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1967
1968
1969
1970
1971
1972
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1973
1974
1975
1976
1977
1978
1979
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1980
1981
1982
1983
1984
1985
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1986
1987
            ],
        )
1988

1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
    def test_max_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        max_length = 20
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, max_length=max_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
    def test_min_length_if_input_embeds(self):
        # PT-only test: TF doesn't have StoppingCriteria
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        min_length = 10
        input_len = input_ids.shape[-1]
        out_gen = model.generate(input_ids=input_ids, min_length=min_length)
        out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length)
        self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1])

2017
    def test_custom_stopping_criteria_overload_error(self):
2018
        # PT-only test: TF doesn't have StoppingCriteria
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2032
        # PT-only test: TF doesn't have StoppingCriteria
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2054
    def test_stop_sequence_stopping_criteria(self):
2055
        # PT-only test: TF doesn't have StoppingCriteria
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2073
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2074
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2086
    def test_generate_input_values_as_encoder_kwarg(self):
2087
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2088
2089
2090
2091
2092
2093
2094
2095
2096
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2097
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2098
        # PT-only test: TF doesn't have group beam search
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
2110
            diversity_penalty=1.0,
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2121
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2122
2123
2124
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2125

2126
    def test_beam_search_low_memory(self):
2127
2128
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I", return_tensors="pt")["input_ids"]

        low_output = model.generate(model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=True)

        high_output = model.generate(
            model_inputs, max_new_tokens=40, num_beams=5, early_stopping=True, low_memory=False
        )
        self.assertListEqual(low_output.tolist(), high_output.tolist())

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
    @slow
    def test_watermark_generation(self):
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device)
        input_len = model_inputs["input_ids"].shape[-1]

        # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :)
        watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
        _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15)

        args = {
            "bias": 2.0,
            "context_width": 1,
            "seeding_scheme": "selfhash",
            "greenlist_ratio": 0.25,
            "hashing_key": 15485863,
        }
        output = model.generate(**model_inputs, do_sample=False, max_length=15)
        output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15)

        # check that the watermarked text is generating what is should
        self.assertListEqual(
            output.tolist(), [[40, 481, 307, 262, 717, 284, 9159, 326, 314, 716, 407, 257, 4336, 286, 262]]
        )
        self.assertListEqual(
            output_selfhash.tolist(), [[40, 481, 307, 2263, 616, 640, 284, 651, 616, 1621, 503, 612, 553, 531, 367]]
        )

        detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args)
        detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True)
        detection_out = detector(output[:, input_len:], return_dict=True)

        # check that the detector is detecting watermarked text
        self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True])
        self.assertListEqual(detection_out.prediction.tolist(), [False])

2177
2178
    @slow
    def test_beam_search_example_integration(self):
2179
        # PT-only test: TF doesn't have a BeamSearchScorer
2180
2181
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
2182
2183
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2184
2185
2186
2187
2188
2189
2190

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
2191
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2192
2193
2194
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2195
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2196

2197
2198
        outputs = model.generate(
            input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs
2199
2200
2201
2202
2203
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2204
2205
    @slow
    def test_constrained_beam_search(self):
2206
        # PT-only test: TF doesn't have constrained beam search
2207
2208
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2209

2210
2211
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2237
2238
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2239
2240
2241
            ],
        )

2242
2243
    @slow
    def test_constrained_beam_search_mixed(self):
2244
        # PT-only test: TF doesn't have constrained beam search
2245
2246
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2277
2278
2279
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2280
2281
2282
2283
2284
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2285
        # PT-only test: TF doesn't have constrained beam search
2286
2287
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2315
2316
2317
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2318
2319
2320
            ],
        )

2321
2322
    @slow
    def test_cfg_mixin(self):
2323
2324
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360

        input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True)
        input["input_ids"] = input["input_ids"].to(torch_device)
        input["attention_mask"] = input["attention_mask"].to(torch_device)

        outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited "
                'that they had to leave the city.\n\n"We\'re going to Paris!"\n'
            ],
        )

        neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True)
        neg["input_ids"] = neg["input_ids"].to(torch_device)
        neg["attention_mask"] = neg["attention_mask"].to(torch_device)
        outputs = model.generate(
            **input,
            max_new_tokens=32,
            guidance_scale=1.5,
            negative_prompt_ids=neg["input_ids"],
            negative_prompt_attention_mask=neg["attention_mask"],
        )
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"'
                'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n'
            ],
        )

2361
2362
    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2363
        # PT-only test: TF doesn't have constrained beam search
2364
2365
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2384
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2385

2386
2387
    @slow
    def test_constrained_beam_search_example_integration(self):
2388
        # PT-only test: TF doesn't have constrained beam search
2389
2390
        tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
2391
2392
2393
2394
2395
2396
2397

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
2398
        input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long)
2399
2400
2401
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
2402
        model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)}
2403
2404
2405
2406

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token

2407
2408
2409
2410
2411
2412
2413
        outputs = model.generate(
            input_ids,
            num_beams=num_beams,
            force_words_ids=[constraint_token_ids],
            min_length=5,
            eos_token_id=model.config.eos_token_id,
            **model_kwargs,
2414
2415
2416
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2417
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2418

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
    @slow
    def test_per_row_stopping_criteria(self):
        text = [
            "They completed the challenging puzzle, revealing the hidden",
            "Today a dragon flew over France",
            "The aroma of freshly baked pizza filled the kitchen",
        ]
        stop_strings = ["secrets"]

        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        tokenizer.padding_side = "left"
        tokenizer.pad_token_id = tokenizer.eos_token_id
        input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to(
            torch_device
        )

        # normal generation with one stopping criteria
        out = model.generate(input_ids, max_length=15)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets of the world.\n",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

        # generation should stop at "secrets" for first batch only, filling the rest with eos tokens
        out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer)
        out_text = tokenizer.batch_decode(out)
        expected_out = [
            "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>",
            "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced",
            "The aroma of freshly baked pizza filled the kitchen with a sense of freshness",
        ]
        self.assertListEqual(out_text, expected_out)

2456
    def test_constrained_beam_search_mixin_type_checks(self):
2457
        # PT-only test: TF doesn't have constrained beam search
2458
2459
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2496

2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
    def test_batched_decoder_start_id(self):
        # PT-only test: TF doesn't support batched_decoder_start_id
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id
        decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0]

        outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id)

        outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch)

        self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist())

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
    def test_decoder_start_id_from_config(self):
        # Refer to: (#30899)
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        decoder_start_token_id = bart_model.generation_config.decoder_start_token_id

        # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type
        outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

        # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config
        bart_model.generation_config.decoder_start_token_id = None
        bart_model.generation_config.bos_token_id = None
        outputs_with_user_id = bart_model.generate(
            input_ids,
            generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id),
        )

        self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist())

        with self.assertRaises(ValueError):
            outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False))

2546
    def test_contrastive_search_batched(self):
2547
        # PT-only test: TF doesn't have constrained beam search
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
    def test_logits_processor_not_inplace(self):
        # PT-only test: TF fixes were not made
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True)
        out_with_temp = model.generate(
            input_ids,
            temperature=0.5,
            do_sample=True,
            output_logits=True,
            output_scores=True,
            return_dict_in_generate=True,
        )

        # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores
        self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist())
        self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist())

2593
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2594
        # Has TF equivalent: this test relies on random sampling
2595
2596
2597
2598
2599
2600
2601
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2602
        expectation = 20
2603

2604
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2605
        text = """Hello, my dog is cute and"""
2606
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2607
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2608

2609
2610
2611
        # Only some seeds will work both on CPU/GPU for a fixed `expectation` value.
        # The selected seed is not guaranteed to work on all torch versions.
        torch.manual_seed(1)
2612
2613
2614
2615
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

2616
        torch.manual_seed(1)
2617
        eos_token_id = [846, 198]
2618
2619
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2620

2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677

    def test_default_max_length_warning(self):
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Default generation config value of 20 -> emits warning
        with self.assertWarns(UserWarning):
            model.generate(input_ids)

        # Explicitly setting max_length to 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(input_ids, max_length=20)
            self.assertEqual(len(warning_list), 0)

        # Generation config max_length != 20 -> no warning
        with warnings.catch_warnings(record=True) as warning_list:
2678
            # generation_config is modified -> legacy mode is disabled = generation_config takes precedence
2679
2680
2681
            model.generation_config.max_length = 10
            model.generate(input_ids)
            self.assertEqual(len(warning_list), 0)
2682

2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
    def test_length_warning_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # This should not raise any warning that min length is not feasible in candidate generation
        with warnings.catch_warnings(record=True) as warning_list:
            model.generate(
                input_ids,
                assistant_model=assistant,
                min_new_tokens=10,
                max_length=20,
            )
            self.assertEqual(len(warning_list), 0)

    def test_generated_length_assisted_generation(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id
        assistant.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)
        input_length = input_ids.shape[-1]

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
            max_new_tokens=20,
        )
        self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length))

        out = model.generate(
            input_ids,
            assistant_model=assistant,
            min_new_tokens=10,
        )
        self.assertTrue((input_length + 10) <= out.shape[-1] <= 20)

2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
    def test_model_kwarg_assisted_decoding_decoder_only(self):
        # PT-only test: TF doesn't support assisted decoding yet.
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with token_type_ids
        outputs_tti = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
        )
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist())

        # Assistant model
        assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        assistant.config.pad_token_id = tokenizer.eos_token_id

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device),
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist())

    def test_model_kwarg_assisted_decoding_encoder_decoder(self):
2768
2769
2770
2771
2772
2773
2774
2775
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. encoder-decoder assistant model
        3. both have a custom input
        (e.g. Whisper)
        """

2776
2777
2778
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg that distorts the output
        class FakeBart(BartForConditionalGeneration):
2779
2780
            def forward(self, input_ids, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, past_key_values=past_key_values, **kwargs)
2781
2782
2783
2784
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

2785
2786
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
                inputs["foo"] = foo
                return inputs

        model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
2805
        outputs_foo = model.generate(input_ids, foo=True)
2806
2807
2808
2809
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2810
2811
2812
        assistant = FakeBart.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
            torch_device
        )
2813
2814
2815
2816
2817
2818
2819
2820

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = assistant.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
            assistant_encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2832
2833

    def test_assisted_decoding_encoder_decoder_shared_encoder(self):
2834
2835
2836
2837
2838
2839
2840
2841
        """
        Tests that the following scenario is compatible with assisted generation:
        1. encoder-decoder main model
        2. decoder-only assistant model
        3. both have a custom input
        (e.g. DistilWhisper)
        """

2842
2843
        # PT-only test: TF doesn't support assisted decoding yet.
        # Bart subclass with a kwarg called foo that distorts the output
2844
        class FakeBartSeq2Seq(BartForConditionalGeneration):
2845
2846
2847
2848
2849
2850
2851
2852
2853
            def forward(self, input_ids, foo=False, **kwargs):
                outs = super().forward(input_ids, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs

            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2854
2855
2856
2857
2858
2859
2860
2861
2862
                inputs["foo"] = foo
                return inputs

        class FakeBartCausalLM(BartForCausalLM):
            def forward(self, input_ids, attention_mask, past_key_values, foo=False, **kwargs):
                outs = super().forward(input_ids, attention_mask, past_key_values=past_key_values, **kwargs)
                if foo:
                    outs["logits"][:, :, :] = 0.0
                return outs
2863

2864
2865
2866
            def prepare_inputs_for_generation(self, *args, foo=False, encoder_outputs=None, **kwargs):
                kwargs["encoder_outputs"] = encoder_outputs
                inputs = super().prepare_inputs_for_generation(*args, **kwargs)
2867
2868
2869
                inputs["foo"] = foo
                return inputs

2870
        model = FakeBartSeq2Seq.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration").to(
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
            torch_device
        )
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BartForConditionalGeneration")

        text = "Hello world"
        tokenized_inputs = tokenizer([text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_normal = model.generate(input_ids)
        self.assertEqual(outputs_normal.shape, (1, 20))

        # Should be different with foo
        outputs_foo = model.generate(input_ids, foo=True)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_foo.tolist(), outputs_normal.tolist())

        # Assistant model
2889
2890
2891
        assistant = FakeBartCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-BartForConditionalGeneration"
        ).to(torch_device)
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909

        # If assisted generation passes model_kwargs correctly, should be same as previous
        outputs_assisted = model.generate(
            input_ids,
            foo=True,
            assistant_model=assistant,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())

        # Check that passing encoder_outputs directly also works as expected
        encoder_outputs = model.get_encoder()(input_ids)

        outputs_assisted = model.generate(
            foo=True,
            assistant_model=assistant,
            encoder_outputs=encoder_outputs,
        )
        self.assertListEqual(outputs_assisted.tolist(), outputs_foo.tolist())
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955

    def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7
        self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7))

    def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self):
        # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly.

        prompt = "Alice and Bob"
        checkpoint = "EleutherAI/pythia-160m-deduped"
        tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        inputs = tokenizer(prompt, return_tensors="pt")

        model = AutoModelForCausalLM.from_pretrained(checkpoint)

        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 5
        assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient"
        generation_kwargs = {
            "eos_token_id": -1,
            "max_new_tokens": 5,
            "do_sample": False,
            "assistant_model": assistant_model,
        }
        model.generate(**inputs, **generation_kwargs)
        # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5
        self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5)
2956

2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
    @slow
    def test_validate_assistant(self):
        # Generate a random sample:
        inputs = np.random.rand(160000)

        # Load a main encoder-decoder model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        )
        model.to(torch_device)

        # process the input:
        features = processor(inputs, return_tensors="pt").to(torch_device)

        # Load an encoder-decoder assistant with same encoder as the main model:
        assistant_distil_model_id = "distil-whisper/distil-large-v2"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum())

        # Load an encoder-decoder assistant with a different encoder than the main model:
        assistant_distil_model_id = "openai/whisper-tiny"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
            use_safetensors=True,
        ).to(torch_device)
        self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum())

        # Load its decoder only version:
        assistant_causal_lm = AutoModelForCausalLM.from_pretrained(
            assistant_distil_model_id,
            low_cpu_mem_usage=True,
            use_safetensors=True,
        ).to(torch_device)
        # It will raise an error as the encoder of the main and assistant model are not compatible:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_causal_lm)

        # Load an encoder-decoder model with a different tokenizer than the main model:
        assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText"
        assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_distil_model_id,
        ).to(torch_device)
        # This should raise an error as the main and assistant model don't use the same tokenizer:
        with self.assertRaises(ValueError):
            model.generate(**features, assistant_model=assistant_seq_to_seq)

3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
    def test_compare_unprocessed_logit_scores(self):
        # Get unprocessed logit scores back from model generate function.
        # Assert that unprocessed logits from generate() are same as those from modal eval()

        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)

        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        with torch.no_grad():
            # Get logits for the next token from fwd pass
            logits_fwd = model(input_ids).logits[:, -1, :][0]

        # Get logits for the next token from generate function
        outputs = model.generate(
            input_ids=input_ids,
            return_dict_in_generate=True,
            output_logits=True,
            max_new_tokens=1,
            do_sample=True,
        )
        logits_gen = outputs.logits[0][0]

        # assert that unprocessed logits from generate() are same as those from modal eval()
        self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist())

    def test_return_unprocessed_logit_scores(self):
        # tell model to generate text and return unprocessed/unwarped logit scores
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = "generate yes or no: "
        input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device)
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)

        outputs = model.generate(
            input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3
        )

        # perform dummy check if unpreprocessed logits make sense.
        # do preselection on high probabilities; find scores of y and n tokens
        probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1)
        indices = torch.argwhere(probs_all > 0.001)
        indices = indices[:, -1]
        tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True)
        probs_max = probs_all[probs_all > 0.001]

        self.assertTrue(len(indices) >= 2)
        next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)}
        self.assertTrue("n" in next_token_dict)
        self.assertTrue("y" in next_token_dict)
        y_prob = next_token_dict["y"]
        n_prob = next_token_dict["n"]

        self.assertTrue(y_prob > 0.001 and n_prob > 0.001)
        self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0)
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086

    def test_generate_from_inputs_embeds_with_bos_token_id_is_none(self):
        article = "Today a dragon flew over Paris."
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        inputs_embeds = model.get_input_embeddings()(input_ids)

        model.generate(inputs_embeds=inputs_embeds, max_length=20, bos_token_id=None)

        # bos_token_id is required when no input ids nor inputs_embeds is passed
        with self.assertRaises(ValueError):
            model.generate(max_length=20, bos_token_id=None)