run_squad.py 34.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForQuestionAnswering,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
42
43
44
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
    RobertaConfig,
45
46
47
48
49
50
51
52
    RobertaForQuestionAnswering,
    RobertaTokenizer,
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
53
54
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
55
)
Aymeric Augustin's avatar
Aymeric Augustin committed
56
57
58
59
60
61
62
63
64
65
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
66
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
67
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
68

69
70
71

logger = logging.getLogger(__name__)

72
73
74
75
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, XLNetConfig, XLMConfig)),
    (),
)
thomwolf's avatar
thomwolf committed
76
77

MODEL_CLASSES = {
78
79
80
81
82
83
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
84
85
}

86

thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

94

95
96
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
97

98

99
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
100
101
102
103
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

104
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
105
106
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
107
108

    if args.max_steps > 0:
109
        t_total = args.max_steps
110
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
111
    else:
112
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
113

114
    # Prepare optimizer and schedule (linear warmup and decay)
115
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
116
    optimizer_grouped_parameters = [
117
118
119
120
121
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
122
    ]
123
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
124
    scheduler = get_linear_schedule_with_warmup(
125
126
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
127
128

    # Check if saved optimizer or scheduler states exist
129
130
131
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
132
        # Load in optimizer and scheduler states
133
134
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
135

thomwolf's avatar
thomwolf committed
136
137
138
139
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
140
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
141

142
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
143

144
145
146
147
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
148
149
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
150
151
152
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
153

thomwolf's avatar
thomwolf committed
154
155
156
157
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
158
159
160
161
162
163
164
165
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
166
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
167

Lysandre's avatar
Lysandre committed
168
    global_step = 1
169
170
171
172
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
173
174
175
176
177
178
179
180
181
182
183
184
185
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
186

thomwolf's avatar
thomwolf committed
187
    tr_loss, logging_loss = 0.0, 0.0
188
    model.zero_grad()
189
190
191
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
192
    # Added here for reproductibility
193
194
    set_seed(args)

195
    for _ in train_iterator:
196
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
197
        for step, batch in enumerate(epoch_iterator):
198
199
200
201
202
203

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

204
            model.train()
thomwolf's avatar
thomwolf committed
205
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
206
207

            inputs = {
208
209
                "input_ids": batch[0],
                "attention_mask": batch[1],
210
                "token_type_ids": batch[2],
211
212
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
213
214
            }

215
216
217
            if args.model_type in ["xlm", "roberta", "distilbert"]:
                del inputs["token_type_ids"]

218
219
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
220
                if args.version_2_with_negative:
221
                    inputs.update({"is_impossible": batch[7]})
222
223
224
225
226
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )

Peiqin Lin's avatar
typos  
Peiqin Lin committed
227
            outputs = model(**inputs)
228
229
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
230

231
            if args.n_gpu > 1:
232
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
233
234
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
235

236
237
238
239
240
241
242
243
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
244
                if args.fp16:
245
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
246
                else:
247
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
248

249
                optimizer.step()
250
                scheduler.step()  # Update learning rate schedule
251
252
253
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
254
                # Log metrics
255
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
256
257
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
258
259
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
260
261
262
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
263
264
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
265
                # Save model checkpoint
266
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
267
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
268
269
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
270
                    # Take care of distributed/parallel training
271
                    model_to_save = model.module if hasattr(model, "module") else model
272
                    model_to_save.save_pretrained(output_dir)
273
274
                    tokenizer.save_pretrained(output_dir)

275
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
276
277
                    logger.info("Saving model checkpoint to %s", output_dir)

278
279
280
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
281

282
283
284
285
286
287
288
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
289
290
291
    if args.local_rank in [-1, 0]:
        tb_writer.close()

292
293
294
295
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
296
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
297
298
299
300
301

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
302

303
    # Note that DistributedSampler samples randomly
304
    eval_sampler = SequentialSampler(dataset)
305
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
306

ronakice's avatar
ronakice committed
307
    # multi-gpu evaluate
308
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
309
310
        model = torch.nn.DataParallel(model)

311
312
313
314
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
315

316
    all_results = []
317
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
318

319
320
321
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
322

323
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
324
            inputs = {
325
326
                "input_ids": batch[0],
                "attention_mask": batch[1],
327
                "token_type_ids": batch[2],
LysandreJik's avatar
LysandreJik committed
328
            }
329
330
331
332

            if args.model_type in ["xlm", "roberta", "distilbert"]:
                del inputs["token_type_ids"]

333
            example_indices = batch[3]
334

LysandreJik's avatar
Cleanup  
LysandreJik committed
335
            # XLNet and XLM use more arguments for their predictions
336
337
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
338
339
340
341
342
                # for lang_id-sensitive xlm models
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )
LysandreJik's avatar
Cleanup  
LysandreJik committed
343

344
345
346
347
348
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
349

LysandreJik's avatar
LysandreJik committed
350
351
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
352
353
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
354
355
356
357
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
358
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
359
360
361
                cls_logits = output[4]

                result = SquadResult(
362
363
364
                    unique_id,
                    start_logits,
                    end_logits,
365
366
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
367
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
368
369
370
371
                )

            else:
                start_logits, end_logits = output
372
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
373

374
            all_results.append(result)
375

376
    evalTime = timeit.default_timer() - start_time
377
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
378

thomwolf's avatar
thomwolf committed
379
    # Compute predictions
380
381
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
382

383
    if args.version_2_with_negative:
384
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
385
386
    else:
        output_null_log_odds_file = None
387

LysandreJik's avatar
Cleanup  
LysandreJik committed
388
    # XLNet and XLM use a more complex post-processing procedure
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
408
    else:
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
424

LysandreJik's avatar
Cleanup  
LysandreJik committed
425
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
426
    results = squad_evaluate(examples, predictions)
427
428
    return results

429

430
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
431
    if args.local_rank not in [-1, 0] and not evaluate:
432
433
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
434

435
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
436
    input_dir = args.data_dir if args.data_dir else "."
437
438
439
440
441
442
443
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
444
445
446
    )

    # Init features and dataset from cache if it exists
447
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
448
        logger.info("Loading features from cached file %s", cached_features_file)
449
        features_and_dataset = torch.load(cached_features_file)
450
451
452
453
454
        features, dataset, examples = (
            features_and_dataset["features"],
            features_and_dataset["dataset"],
            features_and_dataset["examples"],
        )
thomwolf's avatar
thomwolf committed
455
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
456
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
457

458
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
459
460
461
            try:
                import tensorflow_datasets as tfds
            except ImportError:
462
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
463
464

            if args.version_2_with_negative:
465
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
466
467

            tfds_examples = tfds.load("squad")
468
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
469
470
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
471
472
473
474
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
475

476
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
477
478
479
480
481
482
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
483
            return_dataset="pt",
erenup's avatar
erenup committed
484
            threads=args.threads,
Lysandre's avatar
Lysandre committed
485
486
        )

thomwolf's avatar
thomwolf committed
487
        if args.local_rank in [-1, 0]:
488
            logger.info("Saving features into cached file %s", cached_features_file)
489
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
thomwolf's avatar
thomwolf committed
490

VictorSanh's avatar
VictorSanh committed
491
    if args.local_rank == 0 and not evaluate:
492
493
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
494

495
496
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
497
498
    return dataset

499
500
501
502

def main():
    parser = argparse.ArgumentParser()

503
    # Required parameters
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
525

526
    # Other parameters
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
599
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )
648
649
650
651
652
653
    parser.add_argument(
        "--lang_id",
        default=0,
        type=int,
        help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
    )
654

655
656
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
688
689
    args = parser.parse_args()

690
691
692
693
694
695
696
    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

697
698
699
700
701
702
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
703
        raise ValueError(
704
705
706
707
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
708

709
    # Setup distant debugging if needed
710
711
712
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
713

714
        print("Waiting for debugger attach")
715
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
716
717
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
718
    # Setup CUDA, GPU & distributed training
719
    if args.local_rank == -1 or args.no_cuda:
720
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
721
722
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
723
724
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
725
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
726
727
        args.n_gpu = 1
    args.device = device
728

thomwolf's avatar
thomwolf committed
729
    # Setup logging
730
731
732
733
734
735
736
737
738
739
740
741
742
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
743

744
745
    # Set seed
    set_seed(args)
746

thomwolf's avatar
thomwolf committed
747
    # Load pretrained model and tokenizer
748
    if args.local_rank not in [-1, 0]:
749
750
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
751

752
    args.model_type = args.model_type.lower()
753
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
769
770

    if args.local_rank == 0:
771
772
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
773

thomwolf's avatar
thomwolf committed
774
    model.to(args.device)
775

776
777
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
778
779
780
781
782
783
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
784
785

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
786
        except ImportError:
787
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
788

thomwolf's avatar
thomwolf committed
789
    # Training
790
    if args.do_train:
791
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
792
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
793
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
794

thomwolf's avatar
thomwolf committed
795
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
796
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
797
798
799
800
801
802
803
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
804
        # Take care of distributed/parallel training
805
        model_to_save = model.module if hasattr(model, "module") else model
806
807
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
808
809

        # Good practice: save your training arguments together with the trained model
810
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
811

812
        # Load a trained model and vocabulary that you have fine-tuned
813
        model = model_class.from_pretrained(args.output_dir)  # , force_download=True)
814
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
815
816
        model.to(args.device)

thomwolf's avatar
thomwolf committed
817
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
818
819
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
820
821
822
823
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
824
825
826
827
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
828
829
830
831
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
832

833
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
834

835
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
836
            # Reload the model
837
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
838
            model = model_class.from_pretrained(checkpoint)  # , force_download=True)
839
            model.to(args.device)
thomwolf's avatar
thomwolf committed
840
841

            # Evaluate
842
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
843

844
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
845
            results.update(result)
thomwolf's avatar
thomwolf committed
846

847
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
848

849
    return results
850
851
852
853


if __name__ == "__main__":
    main()