run_squad.py 33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForQuestionAnswering,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
42
43
44
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
    RobertaConfig,
45
46
47
48
49
50
51
52
    RobertaForQuestionAnswering,
    RobertaTokenizer,
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
53
54
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
55
)
Aymeric Augustin's avatar
Aymeric Augustin committed
56
57
58
59
60
61
62
63
64
65
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
66
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
67
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
68

69
70
71

logger = logging.getLogger(__name__)

72
73
74
75
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, XLNetConfig, XLMConfig)),
    (),
)
thomwolf's avatar
thomwolf committed
76
77

MODEL_CLASSES = {
78
79
80
81
82
83
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
84
85
}

86

thomwolf's avatar
thomwolf committed
87
88
89
90
91
92
93
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

94

95
96
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
97

98

99
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
100
101
102
103
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

104
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
105
106
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
107
108

    if args.max_steps > 0:
109
        t_total = args.max_steps
110
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
111
    else:
112
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
113

114
    # Prepare optimizer and schedule (linear warmup and decay)
115
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
116
    optimizer_grouped_parameters = [
117
118
119
120
121
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
122
    ]
123
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
124
    scheduler = get_linear_schedule_with_warmup(
125
126
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
127
128

    # Check if saved optimizer or scheduler states exist
129
130
131
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
132
        # Load in optimizer and scheduler states
133
134
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
135

thomwolf's avatar
thomwolf committed
136
137
138
139
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
140
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
141

142
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
143

144
145
146
147
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
148
149
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
150
151
152
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
153

thomwolf's avatar
thomwolf committed
154
155
156
157
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
158
159
160
161
162
163
164
165
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
166
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
167

Lysandre's avatar
Lysandre committed
168
    global_step = 1
169
170
171
172
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
173
174
175
176
177
178
179
180
181
182
183
184
185
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
186

thomwolf's avatar
thomwolf committed
187
    tr_loss, logging_loss = 0.0, 0.0
188
    model.zero_grad()
189
190
191
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
192
    # Added here for reproductibility
193
194
    set_seed(args)

195
    for _ in train_iterator:
196
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
197
        for step, batch in enumerate(epoch_iterator):
198
199
200
201
202
203

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

204
            model.train()
thomwolf's avatar
thomwolf committed
205
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
206
207

            inputs = {
208
209
210
211
212
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": None if args.model_type in ["xlm", "roberta", "distilbert"] else batch[2],
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
213
214
            }

215
216
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
217
                if args.version_2_with_negative:
218
                    inputs.update({"is_impossible": batch[7]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
219
            outputs = model(**inputs)
220
221
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
222

223
            if args.n_gpu > 1:
224
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
225
226
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
227

228
229
230
231
232
233
234
235
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
236
                if args.fp16:
237
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
238
                else:
239
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
240

241
                optimizer.step()
242
                scheduler.step()  # Update learning rate schedule
243
244
245
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
246
                # Log metrics
247
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
248
249
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
250
251
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
252
253
254
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
255
256
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
257
                # Save model checkpoint
258
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
259
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
260
261
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
262
                    # Take care of distributed/parallel training
263
                    model_to_save = model.module if hasattr(model, "module") else model
264
                    model_to_save.save_pretrained(output_dir)
265
266
                    tokenizer.save_pretrained(output_dir)

267
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
268
269
                    logger.info("Saving model checkpoint to %s", output_dir)

270
271
272
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
273

274
275
276
277
278
279
280
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
281
282
283
    if args.local_rank in [-1, 0]:
        tb_writer.close()

284
285
286
287
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
288
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
289
290
291
292
293

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
294

295
    # Note that DistributedSampler samples randomly
296
    eval_sampler = SequentialSampler(dataset)
297
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
298

ronakice's avatar
ronakice committed
299
    # multi-gpu evaluate
300
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
301
302
        model = torch.nn.DataParallel(model)

303
304
305
306
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
307

308
    all_results = []
309
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
310

311
312
313
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
314

315
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
316
            inputs = {
317
318
319
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "token_type_ids": None if args.model_type in ["xlm", "roberta", "distilbert"] else batch[2],
LysandreJik's avatar
LysandreJik committed
320
            }
321
            example_indices = batch[3]
322

LysandreJik's avatar
Cleanup  
LysandreJik committed
323
            # XLNet and XLM use more arguments for their predictions
324
325
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
LysandreJik's avatar
Cleanup  
LysandreJik committed
326

327
328
329
330
331
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
332

LysandreJik's avatar
LysandreJik committed
333
334
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
335
336
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
337
338
339
340
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
341
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
342
343
344
                cls_logits = output[4]

                result = SquadResult(
345
346
347
                    unique_id,
                    start_logits,
                    end_logits,
348
349
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
350
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
351
352
353
354
                )

            else:
                start_logits, end_logits = output
355
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
356

357
            all_results.append(result)
358

359
    evalTime = timeit.default_timer() - start_time
360
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
361

thomwolf's avatar
thomwolf committed
362
    # Compute predictions
363
364
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
365

366
    if args.version_2_with_negative:
367
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
368
369
    else:
        output_null_log_odds_file = None
370

LysandreJik's avatar
Cleanup  
LysandreJik committed
371
    # XLNet and XLM use a more complex post-processing procedure
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
391
    else:
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
407

LysandreJik's avatar
Cleanup  
LysandreJik committed
408
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
409
    results = squad_evaluate(examples, predictions)
410
411
    return results

412

413
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
414
    if args.local_rank not in [-1, 0] and not evaluate:
415
416
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
417

418
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
419
    input_dir = args.data_dir if args.data_dir else "."
420
421
422
423
424
425
426
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
427
428
429
    )

    # Init features and dataset from cache if it exists
430
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
431
        logger.info("Loading features from cached file %s", cached_features_file)
432
433
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
434
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
435
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
436

437
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
438
439
440
            try:
                import tensorflow_datasets as tfds
            except ImportError:
441
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
442
443

            if args.version_2_with_negative:
444
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
445
446

            tfds_examples = tfds.load("squad")
447
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
448
449
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
450
451
452
453
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
454

455
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
456
457
458
459
460
461
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
462
            return_dataset="pt",
erenup's avatar
erenup committed
463
            threads=args.threads,
Lysandre's avatar
Lysandre committed
464
465
        )

thomwolf's avatar
thomwolf committed
466
        if args.local_rank in [-1, 0]:
467
468
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
469

VictorSanh's avatar
VictorSanh committed
470
    if args.local_rank == 0 and not evaluate:
471
472
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
473

474
475
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
476
477
    return dataset

478
479
480
481

def main():
    parser = argparse.ArgumentParser()

482
    # Required parameters
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
504

505
    # Other parameters
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
661
662
    args = parser.parse_args()

663
664
665
666
667
668
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
669
        raise ValueError(
670
671
672
673
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
674

675
    # Setup distant debugging if needed
676
677
678
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
679

680
        print("Waiting for debugger attach")
681
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
682
683
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
684
    # Setup CUDA, GPU & distributed training
685
    if args.local_rank == -1 or args.no_cuda:
686
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
687
688
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
689
690
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
691
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
692
693
        args.n_gpu = 1
    args.device = device
694

thomwolf's avatar
thomwolf committed
695
    # Setup logging
696
697
698
699
700
701
702
703
704
705
706
707
708
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
709

710
711
    # Set seed
    set_seed(args)
712

thomwolf's avatar
thomwolf committed
713
    # Load pretrained model and tokenizer
714
    if args.local_rank not in [-1, 0]:
715
716
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
717

718
    args.model_type = args.model_type.lower()
719
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
735
736

    if args.local_rank == 0:
737
738
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
739

thomwolf's avatar
thomwolf committed
740
    model.to(args.device)
741

742
743
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
744
745
746
747
748
749
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
750
751

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
752
        except ImportError:
753
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
754

thomwolf's avatar
thomwolf committed
755
    # Training
756
    if args.do_train:
757
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
758
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
759
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
760

thomwolf's avatar
thomwolf committed
761
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
762
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
763
764
765
766
767
768
769
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
770
        # Take care of distributed/parallel training
771
        model_to_save = model.module if hasattr(model, "module") else model
772
773
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
774
775

        # Good practice: save your training arguments together with the trained model
776
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
777

778
        # Load a trained model and vocabulary that you have fine-tuned
779
780
        model = model_class.from_pretrained(args.output_dir, force_download=True)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
781
782
        model.to(args.device)

thomwolf's avatar
thomwolf committed
783
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
784
785
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
786
787
788
789
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
790
791
792
793
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
794
795
796
797
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
798

799
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
800

801
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
802
            # Reload the model
803
804
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint, force_download=True)
805
            model.to(args.device)
thomwolf's avatar
thomwolf committed
806
807

            # Evaluate
808
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
809

810
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
811
            results.update(result)
thomwolf's avatar
thomwolf committed
812

813
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
814

815
    return results
816
817
818
819


if __name__ == "__main__":
    main()