run_glue.py 28.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
import logging
import os
import random
25
import json
thomwolf's avatar
thomwolf committed
26
27
28
29
30
31

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
32
33
34
35
36
37

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
38
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
                                  BertForSequenceClassification, BertTokenizer,
42
43
44
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
45
46
47
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
48
49
50
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
Lysandre's avatar
Lysandre committed
51
52
53
54
                                  DistilBertTokenizer,
                                  AlbertConfig,
                                  AlbertForSequenceClassification, 
                                  AlbertTokenizer,
55
56
57
                                  XLMRobertaConfig,
                                  XLMRobertaForSequenceClassification,
                                  XLMRobertaTokenizer,
Lysandre's avatar
Lysandre committed
58
                                )
thomwolf's avatar
thomwolf committed
59

60
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
61

62
63
64
65
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
66
67
68

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
69
70
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
71
72

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
73
74
75
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
76
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
Lysandre's avatar
Lysandre committed
77
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
78
79
    'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    'xlmroberta': (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
80
}
thomwolf's avatar
thomwolf committed
81

thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
88
89
90

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
91
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
92
93
94
95
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
96
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
97
98
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
99

thomwolf's avatar
thomwolf committed
100
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
101
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
102
103
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
104
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
105

thomwolf's avatar
thomwolf committed
106
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
107
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
108
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
109
110
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
111
        ]
Lysandre's avatar
Lysandre committed
112

thomwolf's avatar
thomwolf committed
113
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
114
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
115
116
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
117
            from apex import amp
thomwolf's avatar
thomwolf committed
118
119
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
120
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
121

122
123
124
125
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
126
127
128
129
130
131
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
132
133
    # Train!
    logger.info("***** Running training *****")
134
135
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
136
137
138
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
139
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
140
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
141
142

    global_step = 0
thomwolf's avatar
thomwolf committed
143
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
144
    model.zero_grad()
thomwolf's avatar
thomwolf committed
145
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
146
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
147
148
149
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
150
            model.train()
thomwolf's avatar
thomwolf committed
151
            batch = tuple(t.to(args.device) for t in batch)
152
153
154
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
155
156
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
157
            outputs = model(**inputs)
158
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
165
166
167
168
169
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
170
171

            tr_loss += loss.item()
172
            if (step + 1) % args.gradient_accumulation_steps == 0:
173
174
175
176
177
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
178
                optimizer.step()
thomwolf's avatar
thomwolf committed
179
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
180
                model.zero_grad()
thomwolf's avatar
thomwolf committed
181
                global_step += 1
thomwolf's avatar
thomwolf committed
182

thomwolf's avatar
thomwolf committed
183
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
184
                    logs = {}
thomwolf's avatar
thomwolf committed
185
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
186
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
187
                        for key, value in results.items():
188
                            eval_key = 'eval_{}'.format(key)
Juha Kiili's avatar
Juha Kiili committed
189
190
                            logs[eval_key] = value

191
192
193
194
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs['learning_rate'] = learning_rate_scalar
                    logs['loss'] = loss_scalar
thomwolf's avatar
thomwolf committed
195
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
196

Juha Kiili's avatar
Juha Kiili committed
197
198
199
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{'step': global_step}}))
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
206
207
208

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
209
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
210

thomwolf's avatar
thomwolf committed
211
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
212
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
213
214
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
215
            train_iterator.close()
thomwolf's avatar
thomwolf committed
216
            break
thomwolf's avatar
thomwolf committed
217

thomwolf's avatar
thomwolf committed
218
219
220
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
221
222
223
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
224
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
232
233
234
235
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
236
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
237
        # Note that DistributedSampler samples randomly
238
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
239
240
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
241
242
243
244
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
245
        # Eval!
thomwolf's avatar
thomwolf committed
246
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
247
248
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
249
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
250
251
252
253
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
254
            model.eval()
thomwolf's avatar
thomwolf committed
255
256
257
258
259
260
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
261
262
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
263
264
265
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
266
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

283
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
284
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
285
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
292
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
293
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
294
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
295
296
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
297
    processor = processors[task]()
298
299
300
301
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
302
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
303
304
        str(args.max_seq_length),
        str(task)))
305
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
306
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
307
308
        features = torch.load(cached_features_file)
    else:
309
310
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
311
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta', 'xlmroberta']:
312
            # HACK(label indices are swapped in RoBERTa pretrained model)
313
            label_list[1], label_list[2] = label_list[2], label_list[1]
314
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
315
316
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
317
318
319
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
320
321
322
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
323
        )
324
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
325
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
326
327
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
328
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
329
330
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

331
332
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
333
334
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
335
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
336
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
337
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
338
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
Lysandre's avatar
Lysandre committed
339
 
thomwolf's avatar
thomwolf committed
340
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
341
    return dataset
thomwolf's avatar
thomwolf committed
342
343


thomwolf's avatar
thomwolf committed
344
345
346
347
348
349
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
350
351
352
353
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
354
    parser.add_argument("--task_name", default=None, type=str, required=True,
355
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
356
357
358
359
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
360
361
362
363
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
364
365
366
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
367
368
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
369
370
371
372
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
373
374
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
375
376
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
377
378

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
379
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
380
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
381
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
382
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
Lysandre's avatar
Lysandre committed
383
                        help="Number of updates steps to accumulate before performing a backward/update pass.")     
thomwolf's avatar
thomwolf committed
384
385
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
386
    parser.add_argument("--weight_decay", default=0.0, type=float,
387
                        help="Weight decay if we apply some.")
thomwolf's avatar
thomwolf committed
388
389
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
390
391
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
392
393
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
394
395
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
396
397
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
398

thomwolf's avatar
thomwolf committed
399
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
400
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
401
402
403
404
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
405
406
407
408
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
409
410
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
411
412
413
414
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
415
416
417
418
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
419
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
420
421
422
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
423
424
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
425
426
427
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
428
429
430
431
432
433
434
435
436
437
438
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
439
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
440
441
442
443
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
444
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
445
446
447
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
448
449
450
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
451
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
452
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
453

thomwolf's avatar
thomwolf committed
454
455
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
456
457

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
458
459
460
461
462
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
463
464
465
466
467
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
468
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
469

470
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
471
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
472
473
474
475
476
477
478
479
480
481
482
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
483
484

    if args.local_rank == 0:
485
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
486

thomwolf's avatar
thomwolf committed
487
    model.to(args.device)
thomwolf's avatar
thomwolf committed
488

thomwolf's avatar
thomwolf committed
489
490
    logger.info("Training/evaluation parameters %s", args)

491

thomwolf's avatar
thomwolf committed
492
    # Training
thomwolf's avatar
thomwolf committed
493
    if args.do_train:
494
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
495
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
496
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
497
498


thomwolf's avatar
thomwolf committed
499
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
500
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
501
502
503
504
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
505
        logger.info("Saving model checkpoint to %s", args.output_dir)
506
507
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
508
509
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
510
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
511
512

        # Good practice: save your training arguments together with the trained model
513
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
514

515
        # Load a trained model and vocabulary that you have fine-tuned
516
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
517
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
518
        model.to(args.device)
thomwolf's avatar
thomwolf committed
519

520

thomwolf's avatar
thomwolf committed
521
    # Evaluation
thomwolf's avatar
thomwolf committed
522
    results = {}
thomwolf's avatar
thomwolf committed
523
    if args.do_eval and args.local_rank in [-1, 0]:
524
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
525
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
526
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
527
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
528
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
529
530
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
531
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
532
533
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
534
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
535
            model.to(args.device)
536
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
537
538
539
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
540
    return results
thomwolf's avatar
thomwolf committed
541
542
543
544


if __name__ == "__main__":
    main()