run_plm.py 24.4 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for permutation language modeling.
"""
# You can also adapt this script on your own permutation language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
25
import warnings
26
from dataclasses import dataclass, field
27
from itertools import chain
28
29
from typing import Optional

30
import datasets
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from datasets import load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
    DataCollatorForPermutationLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    XLNetConfig,
    XLNetLMHeadModel,
    set_seed,
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
48
49


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
51
check_min_version("4.34.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
54

55
56
57
58
59
60
61
62
63
64
65
66
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
67
68
69
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
70
71
72
73
74
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
75
76
77
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
78
79
80
81
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
82
83
        },
    )
84
85
86
87
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
88
89
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
90
91
92
93
94
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
95
96
97
98
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
99
100
    token: str = field(
        default=None,
101
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
102
            "help": (
103
104
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
105
            )
106
107
        },
    )
108
109
110
111
112
113
    use_auth_token: bool = field(
        default=None,
        metadata={
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
        },
    )
114
115
116
117
118
119
120
121
122
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
123

124
125
126
127
128
129
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
151
152
153
154
155
156
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
157
158
    max_seq_length: int = field(
        default=512,
159
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
163
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
164
165
166
167
168
169
170
171
172
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    plm_probability: float = field(
        default=1 / 6,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "Ratio of length of a span of masked tokens to surrounding context length for "
                "permutation language modeling."
            )
177
178
179
180
181
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
182
183
184
185
186
187
188
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
193
194
        },
    )
195
196
197
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
198
199
200
201
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
202
203
        },
    )
204
    max_eval_samples: Optional[int] = field(
205
206
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
211
212
        },
    )
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

239
240
241
242
243
244
    if model_args.use_auth_token is not None:
        warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

245
246
247
248
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_plm", model_args, data_args)

249
250
    # Setup logging
    logging.basicConfig(
251
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
252
        datefmt="%m/%d/%Y %H:%M:%S",
253
        handlers=[logging.StreamHandler(sys.stdout)],
254
    )
255

256
257
258
259
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

260
261
262
263
264
265
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
266
267
268
269

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
270
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
271
    )
272
    logger.info(f"Training/evaluation parameters {training_args}")
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

289
290
291
292
293
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
294
    # (the dataset will be downloaded automatically from the datasets Hub).
295
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
298
299
300
301
302
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
303
        raw_datasets = load_dataset(
304
305
306
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
307
            token=model_args.token,
308
309
310
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
311
312
313
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
314
                cache_dir=model_args.cache_dir,
315
                token=model_args.token,
316
            )
317
            raw_datasets["train"] = load_dataset(
318
319
320
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
321
                cache_dir=model_args.cache_dir,
322
                token=model_args.token,
323
            )
324
325
326
327
328
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
329
            data_files["validation"] = data_args.validation_file
330
331
332
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
333
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
334
335
336
337
338
339
340
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
341
                token=model_args.token,
342
343
344
345
346
347
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
348
                token=model_args.token,
349
350
            )

351
352
353
354
355
356
357
358
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
359
360
361
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
362
        "token": model_args.token,
363
    }
364
    if model_args.config_name:
365
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
366
    elif model_args.model_name_or_path:
367
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
368
369
370
    else:
        config = XLNetConfig()
        logger.warning("You are instantiating a new config instance from scratch.")
371
372
373
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
374
            logger.info(f"New config: {config}")
375

376
377
378
379
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
380
        "token": model_args.token,
381
    }
382
    if model_args.tokenizer_name:
383
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
384
    elif model_args.model_name_or_path:
385
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
386
387
388
389
390
391
392
393
394
395
396
397
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = XLNetLMHeadModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
398
            revision=model_args.model_revision,
399
            token=model_args.token,
400
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
401
402
403
        )
    else:
        logger.info("Training new model from scratch")
404
        model = XLNetLMHeadModel(config)
405

406
407
408
409
410
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
411
412
413
414

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
415
        column_names = raw_datasets["train"].column_names
416
    else:
417
        column_names = raw_datasets["validation"].column_names
418
419
    text_column_name = "text" if "text" in column_names else column_names[0]

420
    if data_args.max_seq_length > tokenizer.model_max_length:
421
        logger.warning(
422
423
424
425
426
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

427
428
429
430
431
432
433
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
434
            return tokenizer(examples["text"], padding=padding, truncation=True, max_length=max_seq_length)
435

436
437
438
439
440
441
442
443
444
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
445
446
447
448
449
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name])

450
451
452
453
454
455
456
457
458
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
459
460
461
462
463

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
464
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
465
            total_length = len(concatenated_examples[list(examples.keys())[0]])
466
467
468
            # We drop the small remainder, and if the total_length < max_seq_length  we exclude this batch and return an empty dict.
            # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
469
470
471
472
473
474
475
476
477
478
479
480
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
481
        # https://huggingface.co/docs/datasets/process#map
482

483
484
485
486
487
488
489
490
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
491

492
493
494
495
496
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
497
498
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
499
500
501
502
503

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
504
        if data_args.max_eval_samples is not None:
505
506
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
507

508
509
510
511
512
513
514
515
516
517
518
    # Data collator
    data_collator = DataCollatorForPermutationLanguageModeling(
        tokenizer=tokenizer,
        plm_probability=data_args.plm_probability,
        max_span_length=data_args.max_span_length,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
519
520
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
521
522
523
524
525
526
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
527
528
529
530
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
531
532
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
533
        trainer.save_model()  # Saves the tokenizer too for easy upload
534
        metrics = train_result.metrics
535

536
537
538
539
540
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

541
542
543
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
544

545
546
547
548
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

549
        metrics = trainer.evaluate()
550

551
552
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
553
554
555
556
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
557
        metrics["perplexity"] = perplexity
558

559
560
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
561

562
563
564
565
566
567
568
569
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "language-modeling"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
570

571
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
572
        trainer.push_to_hub(**kwargs)
573
574
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
575

576
577
578
579
580
581
582
583

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()