run_plm.py 22.8 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for permutation language modeling.
"""
# You can also adapt this script on your own permutation language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
26
from itertools import chain
27
28
from typing import Optional

29
import datasets
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from datasets import load_dataset

import transformers
from transformers import (
    AutoConfig,
    AutoTokenizer,
    DataCollatorForPermutationLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    XLNetConfig,
    XLNetLMHeadModel,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
47
48


49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
50
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
53

54
55
56
57
58
59
60
61
62
63
64
65
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
68
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
69
70
71
72
73
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
74
75
76
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
80
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
81
82
        },
    )
83
84
85
86
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
87
88
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
89
90
91
92
93
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
94
95
96
97
98
99
100
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
105
106
        },
    )
107

108
109
110
111
112
113
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
135
136
137
138
139
140
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
141
142
    max_seq_length: int = field(
        default=512,
143
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
148
149
150
151
152
153
154
155
156
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    plm_probability: float = field(
        default=1 / 6,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
160
            "help": (
                "Ratio of length of a span of masked tokens to surrounding context length for "
                "permutation language modeling."
            )
161
162
163
164
165
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
166
167
168
169
170
171
172
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174
175
176
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
177
178
        },
    )
179
180
181
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
184
185
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
186
187
        },
    )
188
    max_eval_samples: Optional[int] = field(
189
190
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
195
196
        },
    )
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
225
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
226
        datefmt="%m/%d/%Y %H:%M:%S",
227
        handlers=[logging.StreamHandler(sys.stdout)],
228
    )
229
230
231
232
233
234
235

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
236
237
238
239
240
241

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
242
    logger.info(f"Training/evaluation parameters {training_args}")
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

259
260
261
262
263
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
Sylvain Gugger's avatar
Sylvain Gugger committed
264
    # (the dataset will be downloaded automatically from the datasets Hub).
265
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
268
269
270
271
272
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
273
        raw_datasets = load_dataset(
274
275
276
277
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
278
279
280
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
281
282
283
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
284
                cache_dir=model_args.cache_dir,
285
                use_auth_token=True if model_args.use_auth_token else None,
286
            )
287
            raw_datasets["train"] = load_dataset(
288
289
290
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
291
                cache_dir=model_args.cache_dir,
292
                use_auth_token=True if model_args.use_auth_token else None,
293
            )
294
295
296
297
298
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
299
            data_files["validation"] = data_args.validation_file
300
301
302
        extension = data_args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
303
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
304
305
306
307
308
309
310
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
311
                use_auth_token=True if model_args.use_auth_token else None,
312
313
314
315
316
317
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
318
                use_auth_token=True if model_args.use_auth_token else None,
319
320
            )

321
322
323
324
325
326
327
328
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
329
330
331
332
333
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
334
    if model_args.config_name:
335
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
336
    elif model_args.model_name_or_path:
337
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
338
339
340
    else:
        config = XLNetConfig()
        logger.warning("You are instantiating a new config instance from scratch.")
341
342
343
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
344
            logger.info(f"New config: {config}")
345

346
347
348
349
350
351
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
352
    if model_args.tokenizer_name:
353
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
354
    elif model_args.model_name_or_path:
355
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
356
357
358
359
360
361
362
363
364
365
366
367
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = XLNetLMHeadModel.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
368
369
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
370
371
372
        )
    else:
        logger.info("Training new model from scratch")
373
        model = XLNetLMHeadModel(config)
374
375
376
377
378
379

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
380
        column_names = raw_datasets["train"].column_names
381
    else:
382
        column_names = raw_datasets["validation"].column_names
383
384
    text_column_name = "text" if "text" in column_names else column_names[0]

385
    if data_args.max_seq_length > tokenizer.model_max_length:
386
        logger.warning(
387
388
389
390
391
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

392
393
394
395
396
397
398
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
399
            return tokenizer(examples["text"], padding=padding, truncation=True, max_length=max_seq_length)
400

401
402
403
404
405
406
407
408
409
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
410
411
412
413
414
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name])

415
416
417
418
419
420
421
422
423
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
424
425
426
427
428

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
429
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
430
431
432
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
433
434
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
435
436
437
438
439
440
441
442
443
444
445
446
447
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
448

449
450
451
452
453
454
455
456
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
457

458
459
460
461
462
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
463
464
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
465
466
467
468
469

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
470
        if data_args.max_eval_samples is not None:
471
472
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
473

474
475
476
477
478
479
480
481
482
483
484
    # Data collator
    data_collator = DataCollatorForPermutationLanguageModeling(
        tokenizer=tokenizer,
        plm_probability=data_args.plm_probability,
        max_span_length=data_args.max_span_length,
    )

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
485
486
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
487
488
489
490
491
492
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
493
494
495
496
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
497
498
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
499
        trainer.save_model()  # Saves the tokenizer too for easy upload
500
        metrics = train_result.metrics
501

502
503
504
505
506
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

507
508
509
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
510

511
512
513
514
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

515
        metrics = trainer.evaluate()
516

517
518
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
519
520
521
522
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
523
        metrics["perplexity"] = perplexity
524

525
526
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
527

528
529
530
531
532
533
534
535
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "language-modeling"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
536

537
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
538
        trainer.push_to_hub(**kwargs)
539
540
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
541

542
543
544
545
546
547
548
549

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()