run_mlm.py 26 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
28
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
30
31
from typing import Optional

32
import datasets
33
from datasets import load_dataset, load_metric
34
35
36
37
38
39
40
41
42
43
44
45

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
46
    is_torch_tpu_available,
47
48
    set_seed,
)
49
from transformers.trainer_utils import get_last_checkpoint
50
from transformers.utils import check_min_version, send_example_telemetry
51
from transformers.utils.versions import require_version
52
53


54
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
55
check_min_version("4.22.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
56

57
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
73
74
75
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
76
77
78
79
80
81
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
82
83
84
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87
88
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
89
90
        },
    )
91
92
93
94
95
96
97
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
98
99
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
100
101
102
103
104
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
105
106
107
108
109
110
111
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
112
113
114
115
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
116
117
        },
    )
118

119
120
121
122
123
124
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
146
147
148
149
150
151
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
152
153
154
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
159
160
161
162
163
164
165
166
167
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
168
169
170
171
172
173
174
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
179
180
        },
    )
181
182
183
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
187
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
188
189
        },
    )
190
    max_eval_samples: Optional[int] = field(
191
192
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
197
198
        },
    )
199
200
201
202
203
204
205

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
206
207
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
208
209
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
210
211
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

227
228
229
230
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

231
232
    # Setup logging
    logging.basicConfig(
233
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
234
        datefmt="%m/%d/%Y %H:%M:%S",
235
        handlers=[logging.StreamHandler(sys.stdout)],
236
    )
237
238
239
240
241
242
243

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
244
245
246
247
248
249
250

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
251
    logger.info(f"Training/evaluation parameters {training_args}")
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

268
269
270
271
272
273
274
275
276
277
278
279
280
281
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
282
        raw_datasets = load_dataset(
283
284
285
286
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
287
288
289
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
290
291
292
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
293
                cache_dir=model_args.cache_dir,
294
                use_auth_token=True if model_args.use_auth_token else None,
295
            )
296
            raw_datasets["train"] = load_dataset(
297
298
299
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
300
                cache_dir=model_args.cache_dir,
301
                use_auth_token=True if model_args.use_auth_token else None,
302
            )
303
304
305
306
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
307
            extension = data_args.train_file.split(".")[-1]
308
        if data_args.validation_file is not None:
309
            data_files["validation"] = data_args.validation_file
310
            extension = data_args.validation_file.split(".")[-1]
311
312
        if extension == "txt":
            extension = "text"
313
314
315
316
317
318
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
319
320
321
322
323
324
325
326

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
327
                use_auth_token=True if model_args.use_auth_token else None,
328
329
330
331
332
333
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
334
                use_auth_token=True if model_args.use_auth_token else None,
335
336
            )

337
338
339
340
341
342
343
344
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
345
346
347
348
349
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
350
    if model_args.config_name:
351
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
352
    elif model_args.model_name_or_path:
353
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
354
355
356
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
357
358
359
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
360
            logger.info(f"New config: {config}")
361

362
363
364
365
366
367
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
368
    if model_args.tokenizer_name:
369
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
370
    elif model_args.model_name_or_path:
371
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
372
373
374
375
376
377
378
379
380
381
382
383
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
384
385
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
386
387
388
389
390
391
392
393
394
395
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
396
        column_names = raw_datasets["train"].column_names
397
    else:
398
        column_names = raw_datasets["validation"].column_names
399
400
    text_column_name = "text" if "text" in column_names else column_names[0]

401
402
403
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
404
            logger.warning(
405
406
407
408
409
410
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
411
            logger.warning(
412
413
414
415
416
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

417
418
419
420
421
422
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
423
424
425
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
426
            return tokenizer(
427
                examples[text_column_name],
428
429
                padding=padding,
                truncation=True,
430
                max_length=max_seq_length,
431
432
433
434
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
435

436
437
438
439
440
441
442
443
444
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
445
446
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
447
448
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
449
        def tokenize_function(examples):
450
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
451

452
453
454
455
456
457
458
459
460
        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )
461
462
463
464
465

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
466
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
467
468
469
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
470
471
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
472
473
474
475
476
477
478
479
480
481
482
483
484
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
485

486
487
488
489
490
491
492
493
        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )
494

495
496
497
498
499
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
500
501
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
502
503
504
505
506

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
507
        if data_args.max_eval_samples is not None:
508
509
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
510

511
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
512
513
514
515
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
            return logits.argmax(dim=-1)

        metric = load_metric("accuracy")

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

531
532
    # Data collator
    # This one will take care of randomly masking the tokens.
533
534
535
536
537
538
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
539
540
541
542
543

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
544
545
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
546
547
        tokenizer=tokenizer,
        data_collator=data_collator,
548
549
550
551
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
552
553
554
555
    )

    # Training
    if training_args.do_train:
556
557
558
559
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
560
561
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
562
        trainer.save_model()  # Saves the tokenizer too for easy upload
563
        metrics = train_result.metrics
564

565
566
567
568
569
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

570
571
572
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
573

574
575
576
577
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

578
        metrics = trainer.evaluate()
579

580
581
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
582
583
584
585
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
586
        metrics["perplexity"] = perplexity
587

588
589
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
590

591
592
593
594
595
596
597
598
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
599

600
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
601
        trainer.push_to_hub(**kwargs)
602
603
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
604

605
606
607
608
609
610
611
612

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()