modeling_utils.py 49.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

18
19
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
20

21
22
import copy
import json
23
24
import logging
import os
thomwolf's avatar
thomwolf committed
25
from io import open
26

27
import six
28
29
import torch
from torch import nn
30
31
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
32
33
34
35
36
37
38

from .file_utils import cached_path

logger = logging.getLogger(__name__)

CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
39
TF_WEIGHTS_NAME = 'model.ckpt'
40
41


thomwolf's avatar
thomwolf committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """
        def __init__(self, *args, **kwargs):
            super(Identity, self).__init__()

        def forward(self, input):
            return input


56
57
58
59
60
61
if not six.PY2:
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = ''.join(docstr) + fn.__doc__
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
62
63
64
65
66
67

    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = fn.__doc__ + ''.join(docstr)
            return fn
        return docstring_decorator
68
69
70
71
72
73
else:
    # Not possible to update class docstrings on python2
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
74

thomwolf's avatar
thomwolf committed
75
76
77
78
79
    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator

thomwolf's avatar
thomwolf committed
80

81
class PretrainedConfig(object):
82
83
84
    r""" Base class for all configuration classes.
        Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.

85
86
87
88
        Note:
            A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights.
            It only affects the model's configuration.

89
90
91
92
93
94
95
96
97
        Class attributes (overridden by derived classes):
            - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values.

        Parameters:
            ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
            ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens)
            ``output_attentions``: boolean, default `False`. Should the model returns attentions weights.
            ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states.
            ``torchscript``: string, default `False`. Is the model used with Torchscript.
98
99
100
    """
    pretrained_config_archive_map = {}

thomwolf's avatar
thomwolf committed
101
102
103
104
105
    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
106
        self.torchscript = kwargs.pop('torchscript', False)
107
        self.pruned_heads = kwargs.pop('pruned_heads', {})
thomwolf's avatar
thomwolf committed
108

thomwolf's avatar
thomwolf committed
109
    def save_pretrained(self, save_directory):
thomwolf's avatar
thomwolf committed
110
        """ Save a configuration object to the directory `save_directory`, so that it
111
            can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method.
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

120
    @classmethod
121
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
122
        r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
123

thomwolf's avatar
thomwolf committed
124
        Parameters:
125
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
126
127

                - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
128
                - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
129
130
                - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.

131
            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
132
133
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
134

135
            kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.
thomwolf's avatar
thomwolf committed
136

137
138
                - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.
thomwolf's avatar
thomwolf committed
139

140
141
142
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

143
144
145
146
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

147
            return_unused_kwargs: (`optional`) bool:
thomwolf's avatar
thomwolf committed
148

149
150
                - If False, then this function returns just the final configuration object.
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
151
152
153

        Examples::

thomwolf's avatar
thomwolf committed
154
155
            # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
            # derived class: BertConfig
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161
162
163
164
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
165

166
        """
167
        cache_dir = kwargs.pop('cache_dir', None)
168
        force_download = kwargs.pop('force_download', False)
169
        proxies = kwargs.pop('proxies', None)
170
        return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
171
172
173

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
174
        elif os.path.isdir(pretrained_model_name_or_path):
175
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
176
177
        else:
            config_file = pretrained_model_name_or_path
178
179
        # redirect to the cache, if necessary
        try:
180
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
Abhishek Rao's avatar
Abhishek Rao committed
181
        except EnvironmentError as e:
182
183
184
185
186
187
188
189
190
191
192
193
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
Abhishek Rao's avatar
Abhishek Rao committed
194
            raise e
195
196
197
198
199
200
201
202
203
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

204
205
206
207
        if hasattr(config, 'pruned_heads'):
            config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()}


208
209
210
211
212
213
214
215
216
        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

thomwolf's avatar
thomwolf committed
217
        logger.info("Model config %s", config)
218
        if return_unused_kwargs:
219
220
221
            return config, kwargs
        else:
            return config
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
238
239
240
    def __eq__(self, other):
        return self.__dict__ == other.__dict__

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


259
class PreTrainedModel(nn.Module):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    r""" Base class for all models.

        :class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
        as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.

        Class attributes (overridden by derived classes):
            - ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture.
            - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
            - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:

                - ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`,
                - ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`,
                - ``path``: a path (string) to the TensorFlow checkpoint.

            - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
275
    """
276
    config_class = None
277
278
279
280
281
282
283
284
285
286
287
288
289
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""

    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
thomwolf's avatar
thomwolf committed
290
        # Save config in model
291
292
        self.config = config

thomwolf's avatar
thomwolf committed
293
294
295
296
297
298
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
thomwolf's avatar
thomwolf committed
299
300
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
301
302
303
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
thomwolf's avatar
thomwolf committed
304
        Return: ``torch.nn.Embeddings``
thomwolf's avatar
thomwolf committed
305
306
307
308
309
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

thomwolf's avatar
thomwolf committed
310
        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
thomwolf's avatar
thomwolf committed
311
312
313
314
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
323
324
325
326
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self.init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

thomwolf's avatar
thomwolf committed
327
328
329
330
331
332
333
334
335
336
    def _tie_or_clone_weights(self, first_module, second_module):
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
            first_module.weight = nn.Parameter(second_module.weight.clone())
        else:
            first_module.weight = second_module.weight

    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
337
        Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
338

339
340
341
342
343
        Arguments:

            new_num_tokens: (`optional`) int:
                New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. 
                If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
thomwolf's avatar
thomwolf committed
344

thomwolf's avatar
thomwolf committed
345
        Return: ``torch.nn.Embeddings``
346
            Pointer to the input tokens Embeddings Module of the model
thomwolf's avatar
thomwolf committed
347
348
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
349
350
351
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
352
353
354
355
356
357
358
359
360

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        if hasattr(self, 'tie_weights'):
            self.tie_weights()

thomwolf's avatar
thomwolf committed
361
362
        return model_embeds

thomwolf's avatar
thomwolf committed
363
364
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
365
366
367
368

            Arguments:

                heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
thomwolf's avatar
thomwolf committed
369
        """
thomwolf's avatar
thomwolf committed
370
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
371

372
373
        to_be_pruned = {}

374
        for layer, heads in heads_to_prune.items():
375
376
377
            if int(layer) not in self.config.pruned_heads:
                self.config.pruned_heads[int(layer)] = heads
                to_be_pruned[int(layer)] = heads
378
379
            else:
                for head in heads:
380
381
                    if head not in self.config.pruned_heads[int(layer)]:
                        self.config.pruned_heads[int(layer)].append(head)
382
383
384
385
386

                        if int(layer) in to_be_pruned:
                            to_be_pruned[int(layer)].append(head)
                        else:
                            to_be_pruned[int(layer)] = [head]
387
                    else:
388
389
390
                        logger.warning("Tried to remove head " + str(head) +
                                       " of layer " + str(layer) +
                                       " but it was already removed. The current removed heads are " + str(heads_to_prune))
391
392

        base_model._prune_heads(to_be_pruned)
thomwolf's avatar
thomwolf committed
393

394
    def save_pretrained(self, save_directory):
395
396
        """ Save a model and its configuration file to a directory, so that it
            can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method.
397
398
399
400
401
402
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # Only save the model it-self if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

thomwolf's avatar
thomwolf committed
403
404
405
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

406
407
408
409
410
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)

411
    @classmethod
412
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
413
414
        r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.

415
416
417
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with ``model.train()``

418
419
420
421
422
        The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
        It is up to you to train those weights with a downstream fine-tuning task.

        The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        Parameters:
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
442
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
443
444
445
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
446
447
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
448

449
450
451
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

452
453
454
455
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

456
            output_loading_info: (`optional`) boolean:
thomwolf's avatar
thomwolf committed
457
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
458
459
460
461
462
463
464
465

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.

        Examples::
thomwolf's avatar
thomwolf committed
466

thomwolf's avatar
thomwolf committed
467
468
469
470
471
472
473
            model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
474

475
        """
thomwolf's avatar
thomwolf committed
476
        config = kwargs.pop('config', None)
thomwolf's avatar
thomwolf committed
477
478
        state_dict = kwargs.pop('state_dict', None)
        cache_dir = kwargs.pop('cache_dir', None)
thomwolf's avatar
thomwolf committed
479
        from_tf = kwargs.pop('from_tf', False)
480
        force_download = kwargs.pop('force_download', False)
481
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
482
        output_loading_info = kwargs.pop('output_loading_info', False)
thomwolf's avatar
thomwolf committed
483
484

        # Load config
thomwolf's avatar
thomwolf committed
485
        if config is None:
486
487
            config, model_kwargs = cls.config_class.from_pretrained(
                pretrained_model_name_or_path, *model_args,
488
                cache_dir=cache_dir, return_unused_kwargs=True,
489
                force_download=force_download,
490
                **kwargs
491
492
493
            )
        else:
            model_kwargs = kwargs
494

thomwolf's avatar
thomwolf committed
495
        # Load model
496
497
        if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
            archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
498
        elif os.path.isdir(pretrained_model_name_or_path):
499
500
501
502
503
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = pretrained_model_name_or_path
510
511
        # redirect to the cache, if necessary
        try:
512
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
513
        except EnvironmentError as e:
514
515
516
517
518
519
520
521
522
523
524
525
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_model_archive_map.keys()),
                        archive_file))
526
            raise e
thomwolf's avatar
thomwolf committed
527
        if resolved_archive_file == archive_file:
528
529
530
531
532
533
            logger.info("loading weights file {}".format(archive_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))

        # Instantiate model.
534
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
535

536
537
538
539
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
540
            return cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
541

thomwolf's avatar
thomwolf committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

thomwolf's avatar
thomwolf committed
575
        # Make sure we are able to load base models as well as derived models (with heads)
576
        start_prefix = ''
thomwolf's avatar
thomwolf committed
577
        model_to_load = model
578
        if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
thomwolf's avatar
thomwolf committed
579
580
581
582
583
            start_prefix = cls.base_model_prefix + '.'
        if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            model_to_load = getattr(model, cls.base_model_prefix)

        load(model_to_load, prefix=start_prefix)
584
585
586
587
588
589
590
591
592
593
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))

thomwolf's avatar
thomwolf committed
594
        if hasattr(model, 'tie_weights'):
595
596
            model.tie_weights()  # make sure word embedding weights are still tied

597
598
599
        # Set model in evaluation mode to desactivate DropOut modules by default
        model.eval()

thomwolf's avatar
thomwolf committed
600
601
602
603
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

604
605
606
        return model


thomwolf's avatar
thomwolf committed
607
608
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
609
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
626
627
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
thomwolf's avatar
thomwolf committed
628
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
629
630
631
632
633
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
634
635
636
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
637
        """
thomwolf's avatar
thomwolf committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
658
659
660
661
662
663
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
664
                position of the first token for the labeled span:
665
666
667
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
668
669
670
        """
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
671
            slen, hsz = hidden_states.shape[-2:]
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
711
        """
712
        hsz = hidden_states.shape[-1]
thomwolf's avatar
thomwolf committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    r""" A SQuAD head inspired by XLNet.

    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
755
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
756
757
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
758
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
759
760
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
761
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
762
763
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
764
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
765
766
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
767
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
768
769
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    """
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    def forward(self, hidden_states, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None):
        outputs = ()

thomwolf's avatar
thomwolf committed
784
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
808
809

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
810
811
812
813
814
815
816

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
817
818
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
836
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
837
838
839
840
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
841
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
842
843
844
845
846
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
thomwolf's avatar
thomwolf committed
847
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
thomwolf's avatar
thomwolf committed
848
849
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
850
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
851
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
852
853
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
854
855
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
856
857
858
        super(SequenceSummary, self).__init__()

        self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
thomwolf's avatar
thomwolf committed
859
        if self.summary_type == 'attn':
thomwolf's avatar
thomwolf committed
860
861
862
863
864
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
865
        self.summary = Identity()
thomwolf's avatar
thomwolf committed
866
        if hasattr(config, 'summary_use_proj') and config.summary_use_proj:
867
868
            if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
869
870
871
872
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

thomwolf's avatar
thomwolf committed
873
        self.activation = Identity()
thomwolf's avatar
thomwolf committed
874
875
876
        if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh':
            self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
877
        self.first_dropout = Identity()
878
879
880
        if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
881
        self.last_dropout = Identity()
882
883
        if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
884

thomwolf's avatar
thomwolf committed
885
    def forward(self, hidden_states, cls_index=None):
thomwolf's avatar
thomwolf committed
886
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
thomwolf's avatar
thomwolf committed
887
            cls_index: [optional] position of the classification token if summary_type == 'cls_index',
thomwolf's avatar
thomwolf committed
888
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
thomwolf's avatar
thomwolf committed
889
                if summary_type == 'cls_index' and cls_index is None:
thomwolf's avatar
thomwolf committed
890
891
892
893
894
895
896
897
                    we take the last token of the sequence as classification token
        """
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
thomwolf's avatar
thomwolf committed
898
899
900
        elif self.summary_type == 'cls_index':
            if cls_index is None:
                cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long)
thomwolf's avatar
thomwolf committed
901
            else:
thomwolf's avatar
thomwolf committed
902
903
904
905
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
                cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
thomwolf's avatar
thomwolf committed
906
907
908
        elif self.summary_type == 'attn':
            raise NotImplementedError

909
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
910
911
        output = self.summary(output)
        output = self.activation(output)
912
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
913
914
915
916

        return output


917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
964
965
966
967
968
969
970
971
972
973
974
975
976


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))