modeling_utils.py 46.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

18
19
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
20

21
22
import copy
import json
23
24
import logging
import os
thomwolf's avatar
thomwolf committed
25
from io import open
26

27
import six
28
29
import torch
from torch import nn
30
31
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
32
33
34
35
36
37
38

from .file_utils import cached_path

logger = logging.getLogger(__name__)

CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
39
TF_WEIGHTS_NAME = 'model.ckpt'
40
41


thomwolf's avatar
thomwolf committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
        r"""A placeholder identity operator that is argument-insensitive.
        """
        def __init__(self, *args, **kwargs):
            super(Identity, self).__init__()

        def forward(self, input):
            return input


56
57
58
59
60
61
62
63
64
65
66
67
if not six.PY2:
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = ''.join(docstr) + fn.__doc__
            return fn
        return docstring_decorator
else:
    # Not possible to update class docstrings on python2
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
68
69


70
class PretrainedConfig(object):
71
72
73
74
75
76
77
78
79
80
81
82
    r""" Base class for all configuration classes.
        Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations.

        Class attributes (overridden by derived classes):
            - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values.

        Parameters:
            ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.
            ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens)
            ``output_attentions``: boolean, default `False`. Should the model returns attentions weights.
            ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states.
            ``torchscript``: string, default `False`. Is the model used with Torchscript.
83
84
85
    """
    pretrained_config_archive_map = {}

thomwolf's avatar
thomwolf committed
86
87
88
89
90
    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
91
        self.torchscript = kwargs.pop('torchscript', False)
thomwolf's avatar
thomwolf committed
92

thomwolf's avatar
thomwolf committed
93
    def save_pretrained(self, save_directory):
thomwolf's avatar
thomwolf committed
94
        """ Save a configuration object to the directory `save_directory`, so that it
95
            can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method.
thomwolf's avatar
thomwolf committed
96
97
98
99
100
101
102
103
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

104
    @classmethod
105
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
106
        r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
107

thomwolf's avatar
thomwolf committed
108
        Parameters:
109
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
110
111

                - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
112
                - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
thomwolf's avatar
thomwolf committed
113
114
                - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.

115
            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
116
117
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
118

119
            kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.
thomwolf's avatar
thomwolf committed
120

121
122
                - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.
thomwolf's avatar
thomwolf committed
123

124
            return_unused_kwargs: (`optional`) bool:
thomwolf's avatar
thomwolf committed
125

126
127
                - If False, then this function returns just the final configuration object.
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
128
129
130

        Examples::

thomwolf's avatar
thomwolf committed
131
132
            # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a
            # derived class: BertConfig
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
139
140
141
            config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
142

143
        """
144
        cache_dir = kwargs.pop('cache_dir', None)
145
        return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
146
147
148

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
149
        elif os.path.isdir(pretrained_model_name_or_path):
150
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
151
152
        else:
            config_file = pretrained_model_name_or_path
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        # redirect to the cache, if necessary
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
            return None
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

thomwolf's avatar
thomwolf committed
188
        logger.info("Model config %s", config)
189
        if return_unused_kwargs:
190
191
192
            return config, kwargs
        else:
            return config
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
209
210
211
    def __eq__(self, other):
        return self.__dict__ == other.__dict__

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


230
class PreTrainedModel(nn.Module):
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    r""" Base class for all models.

        :class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
        as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.

        Class attributes (overridden by derived classes):
            - ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture.
            - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
            - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:

                - ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`,
                - ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`,
                - ``path``: a path (string) to the TensorFlow checkpoint.

            - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
246
    """
247
    config_class = None
248
249
250
251
252
253
254
255
256
257
258
259
260
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""

    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
thomwolf's avatar
thomwolf committed
261
        # Save config in model
262
263
        self.config = config

thomwolf's avatar
thomwolf committed
264
265
266
267
268
269
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
thomwolf's avatar
thomwolf committed
270
271
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
272
273
274
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
thomwolf's avatar
thomwolf committed
275
        Return: ``torch.nn.Embeddings``
thomwolf's avatar
thomwolf committed
276
277
278
279
280
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

thomwolf's avatar
thomwolf committed
281
        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
thomwolf's avatar
thomwolf committed
282
283
284
285
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
thomwolf's avatar
thomwolf committed
286
287
288
289
290
291
292
293
294
295
296
297
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self.init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

thomwolf's avatar
thomwolf committed
298
299
300
301
302
303
304
305
306
307
    def _tie_or_clone_weights(self, first_module, second_module):
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
            first_module.weight = nn.Parameter(second_module.weight.clone())
        else:
            first_module.weight = second_module.weight

    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
308
        Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
309

310
311
312
313
314
        Arguments:

            new_num_tokens: (`optional`) int:
                New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. 
                If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model.
thomwolf's avatar
thomwolf committed
315

thomwolf's avatar
thomwolf committed
316
        Return: ``torch.nn.Embeddings``
317
            Pointer to the input tokens Embeddings Module of the model
thomwolf's avatar
thomwolf committed
318
319
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
320
321
322
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
323
324
325
326
327
328
329
330
331

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        if hasattr(self, 'tie_weights'):
            self.tie_weights()

thomwolf's avatar
thomwolf committed
332
333
        return model_embeds

thomwolf's avatar
thomwolf committed
334
335
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
336
337
338
339

            Arguments:

                heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
thomwolf's avatar
thomwolf committed
340
        """
thomwolf's avatar
thomwolf committed
341
342
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
        base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
343

344
    def save_pretrained(self, save_directory):
345
346
        """ Save a model and its configuration file to a directory, so that it
            can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method.
347
348
349
350
351
352
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # Only save the model it-self if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

thomwolf's avatar
thomwolf committed
353
354
355
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

356
357
358
359
360
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)

361
    @classmethod
362
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
363
364
        r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.

365
366
367
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with ``model.train()``

368
369
370
371
372
        The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
        It is up to you to train those weights with a downstream fine-tuning task.

        The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        Parameters:
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
392
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
393
394
395
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
396
397
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
398
399

            output_loading_info: (`optional`) boolean:
thomwolf's avatar
thomwolf committed
400
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
401
402
403
404
405
406
407
408

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.

        Examples::
thomwolf's avatar
thomwolf committed
409

thomwolf's avatar
thomwolf committed
410
411
412
413
414
415
416
            model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
417

418
        """
thomwolf's avatar
thomwolf committed
419
        config = kwargs.pop('config', None)
thomwolf's avatar
thomwolf committed
420
421
        state_dict = kwargs.pop('state_dict', None)
        cache_dir = kwargs.pop('cache_dir', None)
thomwolf's avatar
thomwolf committed
422
423
        from_tf = kwargs.pop('from_tf', False)
        output_loading_info = kwargs.pop('output_loading_info', False)
thomwolf's avatar
thomwolf committed
424
425

        # Load config
thomwolf's avatar
thomwolf committed
426
        if config is None:
427
428
            config, model_kwargs = cls.config_class.from_pretrained(
                pretrained_model_name_or_path, *model_args,
429
                cache_dir=cache_dir, return_unused_kwargs=True,
430
                **kwargs
431
432
433
            )
        else:
            model_kwargs = kwargs
434

thomwolf's avatar
thomwolf committed
435
        # Load model
436
437
        if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
            archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
438
        elif os.path.isdir(pretrained_model_name_or_path):
439
440
441
442
443
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
444
445
446
447
448
449
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = pretrained_model_name_or_path
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_model_archive_map.keys()),
                        archive_file))
            return None
thomwolf's avatar
thomwolf committed
467
        if resolved_archive_file == archive_file:
468
469
470
471
472
473
            logger.info("loading weights file {}".format(archive_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))

        # Instantiate model.
474
        model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
475

476
477
478
479
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
480
            return cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
481

thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

thomwolf's avatar
thomwolf committed
515
        # Make sure we are able to load base models as well as derived models (with heads)
516
        start_prefix = ''
thomwolf's avatar
thomwolf committed
517
        model_to_load = model
518
        if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
thomwolf's avatar
thomwolf committed
519
520
521
522
523
            start_prefix = cls.base_model_prefix + '.'
        if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            model_to_load = getattr(model, cls.base_model_prefix)

        load(model_to_load, prefix=start_prefix)
524
525
526
527
528
529
530
531
532
533
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))

thomwolf's avatar
thomwolf committed
534
        if hasattr(model, 'tie_weights'):
535
536
            model.tie_weights()  # make sure word embedding weights are still tied

537
538
539
        # Set model in evaluation mode to desactivate DropOut modules by default
        model.eval()

thomwolf's avatar
thomwolf committed
540
541
542
543
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

544
545
546
        return model


thomwolf's avatar
thomwolf committed
547
548
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
549
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
566
567
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
thomwolf's avatar
thomwolf committed
568
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
569
570
571
572
573
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
574
575
576
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
577
        """
thomwolf's avatar
thomwolf committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
598
599
600
601
602
603
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
604
                position of the first token for the labeled span:
605
606
607
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
608
609
610
        """
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
611
            slen, hsz = hidden_states.shape[-2:]
thomwolf's avatar
thomwolf committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
651
        """
652
        hsz = hidden_states.shape[-1]
thomwolf's avatar
thomwolf committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    r""" A SQuAD head inspired by XLNet.

    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
thomwolf's avatar
thomwolf committed
695
        **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
696
697
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
698
        **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
699
700
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
            Indices for the top config.start_n_top start token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
701
        **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
702
703
            ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
704
        **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
705
706
            ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
thomwolf's avatar
thomwolf committed
707
        **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
708
709
            ``torch.FloatTensor`` of shape ``(batch_size,)``
            Log probabilities for the ``is_impossible`` label of the answers.
thomwolf's avatar
thomwolf committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    """
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    def forward(self, hidden_states, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None):
        outputs = ()

thomwolf's avatar
thomwolf committed
724
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
748
749

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
750
751
752
753
754
755
756

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
757
758
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
776
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
777
778
779
780
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
781
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
782
783
784
785
786
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
thomwolf's avatar
thomwolf committed
787
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
thomwolf's avatar
thomwolf committed
788
789
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
790
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
791
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
792
793
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
794
795
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
796
797
798
        super(SequenceSummary, self).__init__()

        self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
thomwolf's avatar
thomwolf committed
799
        if self.summary_type == 'attn':
thomwolf's avatar
thomwolf committed
800
801
802
803
804
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
805
        self.summary = Identity()
thomwolf's avatar
thomwolf committed
806
        if hasattr(config, 'summary_use_proj') and config.summary_use_proj:
807
808
            if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
809
810
811
812
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

thomwolf's avatar
thomwolf committed
813
        self.activation = Identity()
thomwolf's avatar
thomwolf committed
814
815
816
        if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh':
            self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
817
        self.first_dropout = Identity()
818
819
820
        if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
821
        self.last_dropout = Identity()
822
823
        if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
824

thomwolf's avatar
thomwolf committed
825
    def forward(self, hidden_states, cls_index=None):
thomwolf's avatar
thomwolf committed
826
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
thomwolf's avatar
thomwolf committed
827
            cls_index: [optional] position of the classification token if summary_type == 'cls_index',
thomwolf's avatar
thomwolf committed
828
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
thomwolf's avatar
thomwolf committed
829
                if summary_type == 'cls_index' and cls_index is None:
thomwolf's avatar
thomwolf committed
830
831
832
833
834
835
836
837
                    we take the last token of the sequence as classification token
        """
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
thomwolf's avatar
thomwolf committed
838
839
840
        elif self.summary_type == 'cls_index':
            if cls_index is None:
                cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long)
thomwolf's avatar
thomwolf committed
841
            else:
thomwolf's avatar
thomwolf committed
842
843
844
845
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
                cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
thomwolf's avatar
thomwolf committed
846
847
848
        elif self.summary_type == 'attn':
            raise NotImplementedError

849
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
850
851
        output = self.summary(output)
        output = self.activation(output)
852
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
853
854
855
856

        return output


857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
904
905
906
907
908
909
910
911
912
913
914
915
916


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))