Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
bfbe52ec
Commit
bfbe52ec
authored
Jul 27, 2019
by
thomwolf
Browse files
cleaning up example docstrings
parent
4cc1bf81
Changes
15
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
509 additions
and
509 deletions
+509
-509
hubconfs/bert_hubconf.py
hubconfs/bert_hubconf.py
+103
-103
hubconfs/gpt2_hubconf.py
hubconfs/gpt2_hubconf.py
+42
-42
hubconfs/gpt_hubconf.py
hubconfs/gpt_hubconf.py
+38
-38
hubconfs/transformer_xl_hubconf.py
hubconfs/transformer_xl_hubconf.py
+34
-34
hubconfs/xlm_hubconf.py
hubconfs/xlm_hubconf.py
+40
-40
hubconfs/xlnet_hubconf.1.py
hubconfs/xlnet_hubconf.1.py
+42
-42
pytorch_transformers/modeling_auto.py
pytorch_transformers/modeling_auto.py
+16
-16
pytorch_transformers/modeling_bert.py
pytorch_transformers/modeling_bert.py
+61
-61
pytorch_transformers/modeling_gpt2.py
pytorch_transformers/modeling_gpt2.py
+20
-20
pytorch_transformers/modeling_openai.py
pytorch_transformers/modeling_openai.py
+20
-20
pytorch_transformers/modeling_transfo_xl.py
pytorch_transformers/modeling_transfo_xl.py
+12
-12
pytorch_transformers/modeling_utils.py
pytorch_transformers/modeling_utils.py
+16
-16
pytorch_transformers/modeling_xlm.py
pytorch_transformers/modeling_xlm.py
+29
-29
pytorch_transformers/modeling_xlnet.py
pytorch_transformers/modeling_xlnet.py
+34
-34
pytorch_transformers/tokenization_auto.py
pytorch_transformers/tokenization_auto.py
+2
-2
No files found.
hubconfs/bert_hubconf.py
View file @
bfbe52ec
...
@@ -84,12 +84,12 @@ def bertTokenizer(*args, **kwargs):
...
@@ -84,12 +84,12 @@ def bertTokenizer(*args, **kwargs):
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Example:
Example:
>>>
import torch
import torch
>>>
sentence = 'Hello, World!'
sentence = 'Hello, World!'
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>>
toks = tokenizer.tokenize(sentence)
toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
['Hello', '##,', 'World', '##!']
>>>
ids = tokenizer.convert_tokens_to_ids(toks)
ids = tokenizer.convert_tokens_to_ids(toks)
[8667, 28136, 1291, 28125]
[8667, 28136, 1291, 28125]
"""
"""
tokenizer
=
BertTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -105,20 +105,20 @@ def bertModel(*args, **kwargs):
...
@@ -105,20 +105,20 @@ def bertModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertModel
# Load bertModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertModel', 'bert-base-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'bertModel', 'bert-base-cased')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
encoded_layers, _ = model(tokens_tensor, segments_tensors)
encoded_layers, _ = model(tokens_tensor, segments_tensors)
"""
"""
model
=
BertModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -134,20 +134,20 @@ def bertForNextSentencePrediction(*args, **kwargs):
...
@@ -134,20 +134,20 @@ def bertForNextSentencePrediction(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForNextSentencePrediction
# Load bertForNextSentencePrediction
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForNextSentencePrediction', 'bert-base-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForNextSentencePrediction', 'bert-base-cased')
>>>
model.eval()
model.eval()
# Predict the next sentence classification logits
# Predict the next sentence classification logits
>>>
with torch.no_grad():
with torch.no_grad():
next_sent_classif_logits = model(tokens_tensor, segments_tensors)
next_sent_classif_logits = model(tokens_tensor, segments_tensors)
"""
"""
model
=
BertForNextSentencePrediction
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForNextSentencePrediction
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -164,17 +164,17 @@ def bertForPreTraining(*args, **kwargs):
...
@@ -164,17 +164,17 @@ def bertForPreTraining(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForPreTraining
# Load bertForPreTraining
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForPreTraining', 'bert-base-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForPreTraining', 'bert-base-cased')
>>>
masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
"""
"""
model
=
BertForPreTraining
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForPreTraining
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -188,25 +188,25 @@ def bertForMaskedLM(*args, **kwargs):
...
@@ -188,25 +188,25 @@ def bertForMaskedLM(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
masked_index = 8
masked_index = 8
>>>
tokenized_text[masked_index] = '[MASK]'
tokenized_text[masked_index] = '[MASK]'
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForMaskedLM
# Load bertForMaskedLM
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMaskedLM', 'bert-base-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMaskedLM', 'bert-base-cased')
>>>
model.eval()
model.eval()
# Predict all tokens
# Predict all tokens
>>>
with torch.no_grad():
with torch.no_grad():
predictions = model(tokens_tensor, segments_tensors)
predictions = model(tokens_tensor, segments_tensors)
>>>
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_index = torch.argmax(predictions[0, masked_index]).item()
>>>
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
'henson'
'henson'
"""
"""
model
=
BertForMaskedLM
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForMaskedLM
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -230,24 +230,24 @@ def bertForSequenceClassification(*args, **kwargs):
...
@@ -230,24 +230,24 @@ def bertForSequenceClassification(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForSequenceClassification
# Load bertForSequenceClassification
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>>
model.eval()
model.eval()
# Predict the sequence classification logits
# Predict the sequence classification logits
>>>
with torch.no_grad():
with torch.no_grad():
seq_classif_logits = model(tokens_tensor, segments_tensors)
seq_classif_logits = model(tokens_tensor, segments_tensors)
# Or get the sequence classification loss
# Or get the sequence classification loss
>>>
labels = torch.tensor([1])
labels = torch.tensor([1])
>>>
seq_classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
seq_classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
"""
model
=
BertForSequenceClassification
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForSequenceClassification
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -265,24 +265,24 @@ def bertForMultipleChoice(*args, **kwargs):
...
@@ -265,24 +265,24 @@ def bertForMultipleChoice(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
>>>
segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
# Load bertForMultipleChoice
# Load bertForMultipleChoice
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>>
model.eval()
model.eval()
# Predict the multiple choice logits
# Predict the multiple choice logits
>>>
with torch.no_grad():
with torch.no_grad():
multiple_choice_logits = model(tokens_tensor, segments_tensors)
multiple_choice_logits = model(tokens_tensor, segments_tensors)
# Or get the multiple choice loss
# Or get the multiple choice loss
>>>
labels = torch.tensor([1])
labels = torch.tensor([1])
>>>
multiple_choice_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
multiple_choice_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
"""
model
=
BertForMultipleChoice
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForMultipleChoice
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -298,25 +298,25 @@ def bertForQuestionAnswering(*args, **kwargs):
...
@@ -298,25 +298,25 @@ def bertForQuestionAnswering(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForQuestionAnswering
# Load bertForQuestionAnswering
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForQuestionAnswering', 'bert-base-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForQuestionAnswering', 'bert-base-cased')
>>>
model.eval()
model.eval()
# Predict the start and end positions logits
# Predict the start and end positions logits
>>>
with torch.no_grad():
with torch.no_grad():
start_logits, end_logits = model(tokens_tensor, segments_tensors)
start_logits, end_logits = model(tokens_tensor, segments_tensors)
# Or get the total loss which is the sum of the CrossEntropy loss for the start and end token positions
# Or get the total loss which is the sum of the CrossEntropy loss for the start and end token positions
>>>
start_positions, end_positions = torch.tensor([12]), torch.tensor([14])
start_positions, end_positions = torch.tensor([12]), torch.tensor([14])
# set model.train() before if training this loss
# set model.train() before if training this loss
>>>
multiple_choice_loss = model(tokens_tensor, segments_tensors, start_positions=start_positions, end_positions=end_positions)
multiple_choice_loss = model(tokens_tensor, segments_tensors, start_positions=start_positions, end_positions=end_positions)
"""
"""
model
=
BertForQuestionAnswering
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForQuestionAnswering
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -337,24 +337,24 @@ def bertForTokenClassification(*args, **kwargs):
...
@@ -337,24 +337,24 @@ def bertForTokenClassification(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
>>>
segments_tensors = torch.tensor([segments_ids])
segments_tensors = torch.tensor([segments_ids])
# Load bertForTokenClassification
# Load bertForTokenClassification
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
model = torch.hub.load('huggingface/pytorch-transformers', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>>
model.eval()
model.eval()
# Predict the token classification logits
# Predict the token classification logits
>>>
with torch.no_grad():
with torch.no_grad():
classif_logits = model(tokens_tensor, segments_tensors)
classif_logits = model(tokens_tensor, segments_tensors)
# Or get the token classification loss
# Or get the token classification loss
>>>
labels = torch.tensor([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]])
labels = torch.tensor([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]])
>>>
classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
"""
model
=
BertForTokenClassification
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
BertForTokenClassification
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
hubconfs/gpt2_hubconf.py
View file @
bfbe52ec
...
@@ -52,11 +52,11 @@ def gpt2Tokenizer(*args, **kwargs):
...
@@ -52,11 +52,11 @@ def gpt2Tokenizer(*args, **kwargs):
Default: None
Default: None
Example:
Example:
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
>>>
text = "Who was Jim Henson ?"
text = "Who was Jim Henson ?"
>>>
indexed_tokens = tokenizer.encode(tokenized_text)
indexed_tokens = tokenizer.encode(tokenized_text)
"""
"""
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
return
tokenizer
return
tokenizer
...
@@ -71,24 +71,24 @@ def gpt2Model(*args, **kwargs):
...
@@ -71,24 +71,24 @@ def gpt2Model(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2Model
# Load gpt2Model
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Model', 'gpt2')
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Model', 'gpt2')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# past can be used to reuse precomputed hidden state in a subsequent predictions
# past can be used to reuse precomputed hidden state in a subsequent predictions
>>>
with torch.no_grad():
with torch.no_grad():
hidden_states_1, past = model(tokens_tensor_1)
hidden_states_1, past = model(tokens_tensor_1)
hidden_states_2, past = model(tokens_tensor_2, past=past)
hidden_states_2, past = model(tokens_tensor_2, past=past)
"""
"""
...
@@ -104,31 +104,31 @@ def gpt2LMHeadModel(*args, **kwargs):
...
@@ -104,31 +104,31 @@ def gpt2LMHeadModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2LMHeadModel
# Load gpt2LMHeadModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2LMHeadModel', 'gpt2')
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2LMHeadModel', 'gpt2')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# past can be used to reuse precomputed hidden state in a subsequent predictions
# past can be used to reuse precomputed hidden state in a subsequent predictions
>>>
with torch.no_grad():
with torch.no_grad():
predictions_1, past = model(tokens_tensor_1)
predictions_1, past = model(tokens_tensor_1)
predictions_2, past = model(tokens_tensor_2, past=past)
predictions_2, past = model(tokens_tensor_2, past=past)
# Get the predicted last token
# Get the predicted last token
>>>
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>>
predicted_token = tokenizer.decode([predicted_index])
predicted_token = tokenizer.decode([predicted_index])
>>>
assert predicted_token == ' who'
assert predicted_token == ' who'
"""
"""
model
=
GPT2LMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
GPT2LMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -143,25 +143,25 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
...
@@ -143,25 +143,25 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>>
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>>
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
>>>
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text1 = tokenizer.tokenize(text1)
>>>
tokenized_text2 = tokenizer.tokenize(text2)
tokenized_text2 = tokenizer.tokenize(text2)
>>>
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
>>>
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
>>>
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
>>>
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load gpt2DoubleHeadsModel
# Load gpt2DoubleHeadsModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2DoubleHeadsModel', 'gpt2')
model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2DoubleHeadsModel', 'gpt2')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
lm_logits, multiple_choice_logits, presents = model(tokens_tensor, mc_token_ids)
lm_logits, multiple_choice_logits, presents = model(tokens_tensor, mc_token_ids)
"""
"""
model
=
GPT2DoubleHeadsModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
GPT2DoubleHeadsModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
...
hubconfs/gpt_hubconf.py
View file @
bfbe52ec
...
@@ -76,12 +76,12 @@ def openAIGPTTokenizer(*args, **kwargs):
...
@@ -76,12 +76,12 @@ def openAIGPTTokenizer(*args, **kwargs):
Default: None
Default: None
Example:
Example:
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
>>>
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
[763, 509, 4265, 2298, 945, 257, 4265, 2298, 945, 509, 246, 10148, 39041, 483]
[763, 509, 4265, 2298, 945, 257, 4265, 2298, 945, 509, 246, 10148, 39041, 483]
"""
"""
tokenizer
=
OpenAIGPTTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
OpenAIGPTTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -97,21 +97,21 @@ def openAIGPTModel(*args, **kwargs):
...
@@ -97,21 +97,21 @@ def openAIGPTModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTModel
# Load openAIGPTModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTModel', 'openai-gpt')
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTModel', 'openai-gpt')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
hidden_states = model(tokens_tensor)
hidden_states = model(tokens_tensor)
"""
"""
model
=
OpenAIGPTModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
OpenAIGPTModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -126,26 +126,26 @@ def openAIGPTLMHeadModel(*args, **kwargs):
...
@@ -126,26 +126,26 @@ def openAIGPTLMHeadModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
# Prepare tokenized input
>>>
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>>
tokenized_text = tokenizer.tokenize(text)
tokenized_text = tokenizer.tokenize(text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>>
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTLMHeadModel
# Load openAIGPTLMHeadModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTLMHeadModel', 'openai-gpt')
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTLMHeadModel', 'openai-gpt')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
predictions = model(tokens_tensor)
predictions = model(tokens_tensor)
# Get the predicted last token
# Get the predicted last token
>>>
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_index = torch.argmax(predictions[0, -1, :]).item()
>>>
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
'.</w>'
'.</w>'
"""
"""
model
=
OpenAIGPTLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
OpenAIGPTLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -161,25 +161,25 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
...
@@ -161,25 +161,25 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
# Prepare tokenized input
>>>
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>>
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
>>>
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text1 = tokenizer.tokenize(text1)
>>>
tokenized_text2 = tokenizer.tokenize(text2)
tokenized_text2 = tokenizer.tokenize(text2)
>>>
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
>>>
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
>>>
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
>>>
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load openAIGPTDoubleHeadsModel
# Load openAIGPTDoubleHeadsModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)
lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)
"""
"""
model
=
OpenAIGPTDoubleHeadsModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
OpenAIGPTDoubleHeadsModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
...
hubconfs/transformer_xl_hubconf.py
View file @
bfbe52ec
...
@@ -45,12 +45,12 @@ def transformerXLTokenizer(*args, **kwargs):
...
@@ -45,12 +45,12 @@ def transformerXLTokenizer(*args, **kwargs):
* transfo-xl-wt103
* transfo-xl-wt103
Example:
Example:
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>>
text = "Who was Jim Henson ?"
text = "Who was Jim Henson ?"
>>>
tokenized_text = tokenizer.tokenize(tokenized_text)
tokenized_text = tokenizer.tokenize(tokenized_text)
>>>
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
"""
"""
tokenizer
=
TransfoXLTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
TransfoXLTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
return
tokenizer
return
tokenizer
...
@@ -63,26 +63,26 @@ def transformerXLModel(*args, **kwargs):
...
@@ -63,26 +63,26 @@ def transformerXLModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
tokenized_text_1 = tokenizer.tokenize(text_1)
tokenized_text_1 = tokenizer.tokenize(text_1)
>>>
tokenized_text_2 = tokenizer.tokenize(text_2)
tokenized_text_2 = tokenizer.tokenize(text_2)
>>>
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>>
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLModel
# Load transformerXLModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLModel', 'transfo-xl-wt103')
model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLModel', 'transfo-xl-wt103')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
# We can re-use the memory cells in a subsequent call to attend a longer context
>>>
with torch.no_grad():
with torch.no_grad():
hidden_states_1, mems_1 = model(tokens_tensor_1)
hidden_states_1, mems_1 = model(tokens_tensor_1)
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
"""
"""
...
@@ -98,33 +98,33 @@ def transformerXLLMHeadModel(*args, **kwargs):
...
@@ -98,33 +98,33 @@ def transformerXLLMHeadModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
tokenized_text_1 = tokenizer.tokenize(text_1)
tokenized_text_1 = tokenizer.tokenize(text_1)
>>>
tokenized_text_2 = tokenizer.tokenize(text_2)
tokenized_text_2 = tokenizer.tokenize(text_2)
>>>
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>>
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLLMHeadModel
# Load transformerXLLMHeadModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
# We can re-use the memory cells in a subsequent call to attend a longer context
>>>
with torch.no_grad():
with torch.no_grad():
predictions_1, mems_1 = model(tokens_tensor_1)
predictions_1, mems_1 = model(tokens_tensor_1)
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
# Get the predicted last token
# Get the predicted last token
>>>
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>>
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
>>>
assert predicted_token == 'who'
assert predicted_token == 'who'
"""
"""
model
=
TransfoXLLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
TransfoXLLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
hubconfs/xlm_hubconf.py
View file @
bfbe52ec
...
@@ -17,16 +17,16 @@ xlm_start_docstring = """
...
@@ -17,16 +17,16 @@ xlm_start_docstring = """
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
"""
"""
# A lot of models share the same param doc. Use a decorator
# A lot of models share the same param doc. Use a decorator
...
@@ -76,11 +76,11 @@ def xlmTokenizer(*args, **kwargs):
...
@@ -76,11 +76,11 @@ def xlmTokenizer(*args, **kwargs):
Default: None
Default: None
Example:
Example:
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>>
text = "Who was Jim Henson ?"
text = "Who was Jim Henson ?"
>>>
indexed_tokens = tokenizer.encode(tokenized_text)
indexed_tokens = tokenizer.encode(tokenized_text)
"""
"""
tokenizer
=
XLMTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
XLMTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
return
tokenizer
return
tokenizer
...
@@ -91,11 +91,11 @@ def xlmTokenizer(*args, **kwargs):
...
@@ -91,11 +91,11 @@ def xlmTokenizer(*args, **kwargs):
def
xlmModel
(
*
args
,
**
kwargs
):
def
xlmModel
(
*
args
,
**
kwargs
):
"""
"""
# Load xlmModel
# Load xlmModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
"""
"""
...
@@ -108,26 +108,26 @@ def xlmModel(*args, **kwargs):
...
@@ -108,26 +108,26 @@ def xlmModel(*args, **kwargs):
def
xlmLMHeadModel
(
*
args
,
**
kwargs
):
def
xlmLMHeadModel
(
*
args
,
**
kwargs
):
"""
"""
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
# Load xlnetLMHeadModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
predictions_1, mems = model(tokens_tensor_1)
predictions_1, mems = model(tokens_tensor_1)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
# Get the predicted last token
# Get the predicted last token
>>>
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>>
predicted_token = tokenizer.decode([predicted_index])
predicted_token = tokenizer.decode([predicted_index])
>>>
assert predicted_token == ' who'
assert predicted_token == ' who'
"""
"""
model
=
XLMWithLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
XLMWithLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -142,25 +142,25 @@ def xlmLMHeadModel(*args, **kwargs):
...
@@ -142,25 +142,25 @@ def xlmLMHeadModel(*args, **kwargs):
# Example:
# Example:
# # Load the tokenizer
# # Load the tokenizer
#
>>>
import torch
# import torch
#
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# # Prepare tokenized input
# # Prepare tokenized input
#
>>>
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
#
>>>
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
#
>>>
tokenized_text1 = tokenizer.tokenize(text1)
# tokenized_text1 = tokenizer.tokenize(text1)
#
>>>
tokenized_text2 = tokenizer.tokenize(text2)
# tokenized_text2 = tokenizer.tokenize(text2)
#
>>>
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
#
>>>
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
#
>>>
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
#
>>>
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# # Load xlnetForSequenceClassification
#
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
#
>>>
model.eval()
# model.eval()
# # Predict sequence classes logits
# # Predict sequence classes logits
#
>>>
with torch.no_grad():
# with torch.no_grad():
# lm_logits, mems = model(tokens_tensor)
# lm_logits, mems = model(tokens_tensor)
# """
# """
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
...
...
hubconfs/xlnet_hubconf.1.py
View file @
bfbe52ec
...
@@ -53,11 +53,11 @@ def xlnetTokenizer(*args, **kwargs):
...
@@ -53,11 +53,11 @@ def xlnetTokenizer(*args, **kwargs):
Default: None
Default: None
Example:
Example:
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
>>>
text = "Who was Jim Henson ?"
text = "Who was Jim Henson ?"
>>>
indexed_tokens = tokenizer.encode(tokenized_text)
indexed_tokens = tokenizer.encode(tokenized_text)
"""
"""
tokenizer
=
XLNetTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
XLNetTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
return
tokenizer
return
tokenizer
...
@@ -72,23 +72,23 @@ def xlnetModel(*args, **kwargs):
...
@@ -72,23 +72,23 @@ def xlnetModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetModel
# Load xlnetModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
"""
"""
...
@@ -106,30 +106,30 @@ def xlnetLMHeadModel(*args, **kwargs):
...
@@ -106,30 +106,30 @@ def xlnetLMHeadModel(*args, **kwargs):
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>>
import torch
import torch
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
# Prepare tokenized input
>>>
text_1 = "Who was Jim Henson ?"
text_1 = "Who was Jim Henson ?"
>>>
text_2 = "Jim Henson was a puppeteer"
text_2 = "Jim Henson was a puppeteer"
>>>
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_1 = tokenizer.encode(text_1)
>>>
indexed_tokens_2 = tokenizer.encode(text_2)
indexed_tokens_2 = tokenizer.encode(text_2)
>>>
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>>
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
# Load xlnetLMHeadModel
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>>
model.eval()
model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
>>>
with torch.no_grad():
with torch.no_grad():
predictions_1, mems = model(tokens_tensor_1)
predictions_1, mems = model(tokens_tensor_1)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
# Get the predicted last token
# Get the predicted last token
>>>
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>>
predicted_token = tokenizer.decode([predicted_index])
predicted_token = tokenizer.decode([predicted_index])
>>>
assert predicted_token == ' who'
assert predicted_token == ' who'
"""
"""
model
=
XLNetLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
XLNetLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -144,25 +144,25 @@ def xlnetLMHeadModel(*args, **kwargs):
...
@@ -144,25 +144,25 @@ def xlnetLMHeadModel(*args, **kwargs):
# Example:
# Example:
# # Load the tokenizer
# # Load the tokenizer
#
>>>
import torch
# import torch
#
>>>
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# # Prepare tokenized input
# # Prepare tokenized input
#
>>>
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
#
>>>
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
#
>>>
tokenized_text1 = tokenizer.tokenize(text1)
# tokenized_text1 = tokenizer.tokenize(text1)
#
>>>
tokenized_text2 = tokenizer.tokenize(text2)
# tokenized_text2 = tokenizer.tokenize(text2)
#
>>>
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
#
>>>
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
#
>>>
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
#
>>>
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# # Load xlnetForSequenceClassification
#
>>>
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
#
>>>
model.eval()
# model.eval()
# # Predict sequence classes logits
# # Predict sequence classes logits
#
>>>
with torch.no_grad():
# with torch.no_grad():
# lm_logits, mems = model(tokens_tensor)
# lm_logits, mems = model(tokens_tensor)
# """
# """
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
...
...
pytorch_transformers/modeling_auto.py
View file @
bfbe52ec
...
@@ -89,15 +89,15 @@ class AutoConfig(object):
...
@@ -89,15 +89,15 @@ class AutoConfig(object):
Examples::
Examples::
>>>
config = AutoConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = AutoConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>>
config = AutoConfig.from_pretrained('./test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = AutoConfig.from_pretrained('./test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>>
config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
>>>
config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>>
assert config.output_attention == True
assert config.output_attention == True
>>>
config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>>
foo=False, return_unused_kwargs=True)
foo=False, return_unused_kwargs=True)
>>>
assert config.output_attention == True
assert config.output_attention == True
>>>
assert unused_kwargs == {'foo': False}
assert unused_kwargs == {'foo': False}
"""
"""
if
'bert'
in
pretrained_model_name_or_path
:
if
'bert'
in
pretrained_model_name_or_path
:
...
@@ -202,13 +202,13 @@ class AutoModel(object):
...
@@ -202,13 +202,13 @@ class AutoModel(object):
Examples::
Examples::
>>>
model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
>>>
model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
>>>
model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
>>>
assert model.config.output_attention == True
assert model.config.output_attention == True
>>>
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>>
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
>>>
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
"""
if
'bert'
in
pretrained_model_name_or_path
:
if
'bert'
in
pretrained_model_name_or_path
:
...
...
pytorch_transformers/modeling_bert.py
View file @
bfbe52ec
...
@@ -643,12 +643,12 @@ class BertModel(BertPreTrainedModel):
...
@@ -643,12 +643,12 @@ class BertModel(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
model = BertModel(config)
model = BertModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -754,13 +754,13 @@ class BertForPreTraining(BertPreTrainedModel):
...
@@ -754,13 +754,13 @@ class BertForPreTraining(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForPreTraining(config)
model = BertForPreTraining(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
prediction_scores, seq_relationship_scores = outputs[:2]
prediction_scores, seq_relationship_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -824,13 +824,13 @@ class BertForMaskedLM(BertPreTrainedModel):
...
@@ -824,13 +824,13 @@ class BertForMaskedLM(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForMaskedLM(config)
model = BertForMaskedLM(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, masked_lm_labels=input_ids)
outputs = model(input_ids, masked_lm_labels=input_ids)
>>>
loss, prediction_scores = outputs[:2]
loss, prediction_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -891,13 +891,13 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
...
@@ -891,13 +891,13 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForNextSentencePrediction(config)
model = BertForNextSentencePrediction(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
seq_relationship_scores = outputs[0]
seq_relationship_scores = outputs[0]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -951,14 +951,14 @@ class BertForSequenceClassification(BertPreTrainedModel):
...
@@ -951,14 +951,14 @@ class BertForSequenceClassification(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForSequenceClassification(config)
model = BertForSequenceClassification(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
>>>
loss, logits = outputs[:2]
loss, logits = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1057,15 +1057,15 @@ class BertForMultipleChoice(BertPreTrainedModel):
...
@@ -1057,15 +1057,15 @@ class BertForMultipleChoice(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForMultipleChoice(config)
model = BertForMultipleChoice(config)
>>>
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
>>>
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>>
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
>>>
loss, classification_scores = outputs[:2]
loss, classification_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1127,14 +1127,14 @@ class BertForTokenClassification(BertPreTrainedModel):
...
@@ -1127,14 +1127,14 @@ class BertForTokenClassification(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForTokenClassification(config)
model = BertForTokenClassification(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
>>>
loss, scores = outputs[:2]
loss, scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1203,15 +1203,15 @@ class BertForQuestionAnswering(BertPreTrainedModel):
...
@@ -1203,15 +1203,15 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased')
>>>
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>>
model = BertForQuestionAnswering(config)
model = BertForQuestionAnswering(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
>>>
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
>>>
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>>
loss, start_scores, end_scores = outputs[:2]
loss, start_scores, end_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_gpt2.py
View file @
bfbe52ec
...
@@ -433,12 +433,12 @@ class GPT2Model(GPT2PreTrainedModel):
...
@@ -433,12 +433,12 @@ class GPT2Model(GPT2PreTrainedModel):
Examples::
Examples::
>>>
config = GPT2Config.from_pretrained('gpt2')
config = GPT2Config.from_pretrained('gpt2')
>>>
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>>
model = GPT2Model(config)
model = GPT2Model(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -567,12 +567,12 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -567,12 +567,12 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Examples::
Examples::
>>>
config = GPT2Config.from_pretrained('gpt2')
config = GPT2Config.from_pretrained('gpt2')
>>>
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>>
model = GPT2LMHeadModel(config)
model = GPT2LMHeadModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=input_ids)
outputs = model(input_ids, labels=input_ids)
>>>
loss, logits = outputs[:2]
loss, logits = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -683,14 +683,14 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -683,14 +683,14 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
Examples::
Examples::
>>>
config = GPT2Config.from_pretrained('gpt2')
config = GPT2Config.from_pretrained('gpt2')
>>>
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>>
model = GPT2DoubleHeadsModel(config)
model = GPT2DoubleHeadsModel(config)
>>>
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>>
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>>
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, mc_token_ids)
outputs = model(input_ids, mc_token_ids)
>>>
lm_prediction_scores, mc_prediction_scores = outputs[:2]
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_openai.py
View file @
bfbe52ec
...
@@ -439,12 +439,12 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
...
@@ -439,12 +439,12 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
>>>
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>>
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>>
model = OpenAIGPTModel(config)
model = OpenAIGPTModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -558,12 +558,12 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
...
@@ -558,12 +558,12 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
>>>
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>>
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>>
model = OpenAIGPTLMHeadModel(config)
model = OpenAIGPTLMHeadModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=input_ids)
outputs = model(input_ids, labels=input_ids)
>>>
loss, logits = outputs[:2]
loss, logits = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -665,14 +665,14 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
...
@@ -665,14 +665,14 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
Examples::
Examples::
>>>
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>>
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>>
model = OpenAIGPTDoubleHeadsModel(config)
model = OpenAIGPTDoubleHeadsModel(config)
>>>
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>>
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>>
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, mc_token_ids)
outputs = model(input_ids, mc_token_ids)
>>>
lm_prediction_scores, mc_prediction_scores = outputs[:2]
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_transfo_xl.py
View file @
bfbe52ec
...
@@ -968,12 +968,12 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
...
@@ -968,12 +968,12 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
Examples::
Examples::
>>>
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
>>>
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>>
model = TransfoXLModel(config)
model = TransfoXLModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states, mems = outputs[:2]
last_hidden_states, mems = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1284,12 +1284,12 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
...
@@ -1284,12 +1284,12 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
Examples::
Examples::
>>>
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
>>>
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>>
model = TransfoXLLMHeadModel(config)
model = TransfoXLLMHeadModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
prediction_scores, mems = outputs[:2]
prediction_scores, mems = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_utils.py
View file @
bfbe52ec
...
@@ -105,15 +105,15 @@ class PretrainedConfig(object):
...
@@ -105,15 +105,15 @@ class PretrainedConfig(object):
Examples::
Examples::
>>>
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>>
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>>
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
>>>
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>>
assert config.output_attention == True
assert config.output_attention == True
>>>
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>>
foo=False, return_unused_kwargs=True)
foo=False, return_unused_kwargs=True)
>>>
assert config.output_attention == True
assert config.output_attention == True
>>>
assert unused_kwargs == {'foo': False}
assert unused_kwargs == {'foo': False}
"""
"""
cache_dir
=
kwargs
.
pop
(
'cache_dir'
,
None
)
cache_dir
=
kwargs
.
pop
(
'cache_dir'
,
None
)
...
@@ -369,13 +369,13 @@ class PreTrainedModel(nn.Module):
...
@@ -369,13 +369,13 @@ class PreTrainedModel(nn.Module):
Examples::dictionary
Examples::dictionary
>>>
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
>>>
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
>>>
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
>>>
assert model.config.output_attention == True
assert model.config.output_attention == True
>>>
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>>
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
>>>
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
"""
config
=
kwargs
.
pop
(
'config'
,
None
)
config
=
kwargs
.
pop
(
'config'
,
None
)
...
...
pytorch_transformers/modeling_xlm.py
View file @
bfbe52ec
...
@@ -472,12 +472,12 @@ class XLMModel(XLMPreTrainedModel):
...
@@ -472,12 +472,12 @@ class XLMModel(XLMPreTrainedModel):
Examples::
Examples::
>>>
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>>
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
model = XLMModel(config)
model = XLMModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
ATTRIBUTES
=
[
'encoder'
,
'eos_index'
,
'pad_index'
,
# 'with_output',
ATTRIBUTES
=
[
'encoder'
,
'eos_index'
,
'pad_index'
,
# 'with_output',
...
@@ -745,12 +745,12 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
...
@@ -745,12 +745,12 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
Examples::
Examples::
>>>
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>>
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
model = XLMWithLMHeadModel(config)
model = XLMWithLMHeadModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -805,14 +805,14 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
...
@@ -805,14 +805,14 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
Examples::
Examples::
>>>
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>>
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>>
model = XLMForSequenceClassification(config)
model = XLMForSequenceClassification(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
>>>
loss, logits = outputs[:2]
loss, logits = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -885,15 +885,15 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
...
@@ -885,15 +885,15 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
Examples::
Examples::
>>>
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>>
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>>
model = XLMForQuestionAnswering(config)
model = XLMForQuestionAnswering(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
>>>
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
>>>
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>>
loss, start_scores, end_scores = outputs[:2]
loss, start_scores, end_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/modeling_xlnet.py
View file @
bfbe52ec
...
@@ -712,12 +712,12 @@ class XLNetModel(XLNetPreTrainedModel):
...
@@ -712,12 +712,12 @@ class XLNetModel(XLNetPreTrainedModel):
Examples::
Examples::
>>>
config = XLNetConfig.from_pretrained('xlnet-large-cased')
config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>>
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>>
model = XLNetModel(config)
model = XLNetModel(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids)
outputs = model(input_ids)
>>>
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1019,17 +1019,17 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
...
@@ -1019,17 +1019,17 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
Examples::
Examples::
>>>
config = XLNetConfig.from_pretrained('xlnet-large-cased')
config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>>
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>>
model = XLNetLMHeadModel(config)
model = XLNetLMHeadModel(config)
>>>
# We show how to setup inputs to predict a next token using a bi-directional context.
# We show how to setup inputs to predict a next token using a bi-directional context.
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
>>>
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>>
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>>
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
>>>
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>>
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>>
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1100,14 +1100,14 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
...
@@ -1100,14 +1100,14 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
Examples::
Examples::
>>>
config = XLNetConfig.from_pretrained('xlnet-large-cased')
config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>>
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>>
>>>
model = XLNetForSequenceClassification(config)
model = XLNetForSequenceClassification(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>>
outputs = model(input_ids, labels=labels)
outputs = model(input_ids, labels=labels)
>>>
loss, logits = outputs[:2]
loss, logits = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
@@ -1200,15 +1200,15 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
...
@@ -1200,15 +1200,15 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
Examples::
Examples::
>>>
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>>
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>>
model = XLMForQuestionAnswering(config)
model = XLMForQuestionAnswering(config)
>>>
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>>
start_positions = torch.tensor([1])
start_positions = torch.tensor([1])
>>>
end_positions = torch.tensor([3])
end_positions = torch.tensor([3])
>>>
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>>
loss, start_scores, end_scores = outputs[:2]
loss, start_scores, end_scores = outputs[:2]
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
...
...
pytorch_transformers/tokenization_auto.py
View file @
bfbe52ec
...
@@ -78,8 +78,8 @@ class AutoTokenizer(object):
...
@@ -78,8 +78,8 @@ class AutoTokenizer(object):
Examples::
Examples::
>>>
config = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 and cache.
config = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 and cache.
>>>
config = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
config = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
"""
"""
if
'bert'
in
pretrained_model_name_or_path
:
if
'bert'
in
pretrained_model_name_or_path
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment