modeling_utils.py 39.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

18
19
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
20

21
22
import copy
import json
23
24
import logging
import os
thomwolf's avatar
thomwolf committed
25
from io import open
26

27
import six
28
29
import torch
from torch import nn
30
31
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
32
33
34
35
36
37
38

from .file_utils import cached_path

logger = logging.getLogger(__name__)

CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
39
TF_WEIGHTS_NAME = 'model.ckpt'
40
41


42
43
44
45
46
47
48
49
50
51
52
53
if not six.PY2:
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = ''.join(docstr) + fn.__doc__
            return fn
        return docstring_decorator
else:
    # Not possible to update class docstrings on python2
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
54
55


56
class PretrainedConfig(object):
thomwolf's avatar
thomwolf committed
57
58
    """ Base class for all configuration classes.
        Handle a few common parameters and methods for loading/downloading/saving configurations.
59
60
61
    """
    pretrained_config_archive_map = {}

thomwolf's avatar
thomwolf committed
62
63
64
65
66
    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
67
        self.torchscript = kwargs.pop('torchscript', False)
thomwolf's avatar
thomwolf committed
68

thomwolf's avatar
thomwolf committed
69
    def save_pretrained(self, save_directory):
thomwolf's avatar
thomwolf committed
70
        """ Save a configuration object to a directory, so that it
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
78
79
            can be re-loaded using the `from_pretrained(save_directory)` class method.
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

80
    @classmethod
81
    def from_pretrained(cls, pretrained_model_name_or_path, *input, **kwargs):
thomwolf's avatar
thomwolf committed
82
        r""" Instantiate a PretrainedConfig from a pre-trained model configuration.
83
84

        Params:
thomwolf's avatar
thomwolf committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model configuration to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a saved configuration `file`.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **kwargs**: (`optional`) dict:
                Dictionnary of key, values to update the configuration object after loading.
                Can be used to override selected configuration parameters.

        Examples::

            >>> config = BertConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            >>> config = BertConfig.from_pretrained('./test/saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            >>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
            >>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True)
            >>> assert config.output_attention == True

106
        """
107
        cache_dir = kwargs.pop('cache_dir', None)
108
109
110

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
111
        elif os.path.isdir(pretrained_model_name_or_path):
112
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
113
114
        else:
            config_file = pretrained_model_name_or_path
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        # redirect to the cache, if necessary
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
            return None
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

thomwolf's avatar
thomwolf committed
150
        logger.info("Model config %s", config)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        return config

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
168
169
170
    def __eq__(self, other):
        return self.__dict__ == other.__dict__

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


189
class PreTrainedModel(nn.Module):
thomwolf's avatar
thomwolf committed
190
    """ Base class for all models. Handle loading/storing model config and
191
192
193
194
195
196
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = PretrainedConfig
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""
thomwolf's avatar
thomwolf committed
197
    input_embeddings = None
198
199
200
201
202
203
204
205
206
207

    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
thomwolf's avatar
thomwolf committed
208
        # Save config in model
209
210
        self.config = config

thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
thomwolf's avatar
thomwolf committed
217
218
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
219
220
221
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
thomwolf's avatar
thomwolf committed
222
        Return: ``torch.nn.Embeddings``
thomwolf's avatar
thomwolf committed
223
224
225
226
227
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

thomwolf's avatar
thomwolf committed
228
        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
thomwolf's avatar
thomwolf committed
229
230
231
232
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
241
242
243
244
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self.init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
251
252
253
254
    def _tie_or_clone_weights(self, first_module, second_module):
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
            first_module.weight = nn.Parameter(second_module.weight.clone())
        else:
            first_module.weight = second_module.weight

    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
thomwolf's avatar
thomwolf committed
255
            Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
256
257

        Args:
thomwolf's avatar
thomwolf committed
258
259
            new_num_tokens: (`optional`) int
                New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
260
261
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
262
                If not provided or None: does nothing.
thomwolf's avatar
thomwolf committed
263
        Return: ``torch.nn.Embeddings``
thomwolf's avatar
thomwolf committed
264
            Pointer to the input tokens Embedding Module of the model
thomwolf's avatar
thomwolf committed
265
266
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
267
268
269
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
270
271
272
273
274
275
276
277
278

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        if hasattr(self, 'tie_weights'):
            self.tie_weights()

thomwolf's avatar
thomwolf committed
279
280
        return model_embeds

thomwolf's avatar
thomwolf committed
281
282
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
thomwolf's avatar
thomwolf committed
283
284
            Args:
                heads_to_prune: dict of {layer_num (int): list of heads to prune in this layer (list of int)}
thomwolf's avatar
thomwolf committed
285
        """
thomwolf's avatar
thomwolf committed
286
287
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
        base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
288

289
290
291
292
293
294
295
296
297
    def save_pretrained(self, save_directory):
        """ Save a model with its configuration file to a directory, so that it
            can be re-loaded using the `from_pretrained(save_directory)` class method.
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # Only save the model it-self if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

thomwolf's avatar
thomwolf committed
298
299
300
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

301
302
303
304
305
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)

306
307
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
308
        r""" Instantiate a PretrainedConfig from a pre-trained model configuration.
309
310

        Params:
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
            **pretrained_model_name_or_path**: either:
                - a string with the `shortcut name` of a pre-trained model to load from cache
                    or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
                - a path to a `directory` containing a configuration file saved
                    using the `save_pretrained(save_directory)` method.
                - a path or url to a tensorflow index checkpoint `file` (e.g. `./tf_model/model.ckpt.index`).
                    In this case, ``from_tf`` should be set to True and a configuration object should be
                    provided as `config` argument. This loading option is slower than converting the TensorFlow
                    checkpoint in a PyTorch model using the provided conversion scripts and loading
                    the PyTorch model afterwards.
            **config**: an optional configuration for the model to use instead of an automatically loaded configuation.
                Configuration can be automatically loaded when:
                - the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
                - the model was saved using the `save_pretrained(save_directory)` (loaded by suppling the save directory).
            **state_dict**: an optional state dictionnary for the model to use instead of a state dictionary loaded
                from saved weights file.
                This option can be used if you want to create a model from a pretrained configuraton but load your own weights.
                In this case though, you should check if using `save_pretrained(dir)` and `from_pretrained(save_directory)` is not
                a simpler option.
            **cache_dir**: (`optional`) string:
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
            **output_loading_info**: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
            **kwargs**: (`optional`) dict:
                Dictionnary of key, values to update the configuration object after loading.
                Can be used to override selected configuration parameters. E.g. ``output_attention=True``

        Examples::

            >>> model = BertModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            >>> model = BertModel.from_pretrained('./test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            >>> model = BertModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            >>> assert model.config.output_attention == True
            >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)

349
        """
thomwolf's avatar
thomwolf committed
350
        config = kwargs.pop('config', None)
thomwolf's avatar
thomwolf committed
351
352
        state_dict = kwargs.pop('state_dict', None)
        cache_dir = kwargs.pop('cache_dir', None)
thomwolf's avatar
thomwolf committed
353
354
        from_tf = kwargs.pop('from_tf', False)
        output_loading_info = kwargs.pop('output_loading_info', False)
thomwolf's avatar
thomwolf committed
355
356

        # Load config
thomwolf's avatar
thomwolf committed
357
358
        if config is None:
            config = cls.config_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
359

thomwolf's avatar
thomwolf committed
360
        # Load model
361
362
        if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
            archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
363
        elif os.path.isdir(pretrained_model_name_or_path):
364
365
366
367
368
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
369
370
371
372
373
374
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = pretrained_model_name_or_path
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_model_archive_map.keys()),
                        archive_file))
            return None
thomwolf's avatar
thomwolf committed
392
        if resolved_archive_file == archive_file:
393
394
395
396
397
398
            logger.info("loading weights file {}".format(archive_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))

        # Instantiate model.
thomwolf's avatar
thomwolf committed
399
400
        model = cls(config)

401
402
403
404
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
405
            return cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
406

thomwolf's avatar
thomwolf committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

thomwolf's avatar
thomwolf committed
440
        # Make sure we are able to load base models as well as derived models (with heads)
441
        start_prefix = ''
thomwolf's avatar
thomwolf committed
442
        model_to_load = model
443
        if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
thomwolf's avatar
thomwolf committed
444
445
446
447
448
            start_prefix = cls.base_model_prefix + '.'
        if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            model_to_load = getattr(model, cls.base_model_prefix)

        load(model_to_load, prefix=start_prefix)
449
450
451
452
453
454
455
456
457
458
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))

thomwolf's avatar
thomwolf committed
459
        if hasattr(model, 'tie_weights'):
460
461
            model.tie_weights()  # make sure word embedding weights are still tied

thomwolf's avatar
thomwolf committed
462
463
464
465
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

466
467
468
        return model


thomwolf's avatar
thomwolf committed
469
470
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
thomwolf's avatar
thomwolf committed
471
        """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
thomwolf's avatar
thomwolf committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
488
489
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
thomwolf's avatar
thomwolf committed
490
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
491
492
493
494
495
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
496
497
498
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)`
                invalid position mask such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
499
        """
thomwolf's avatar
thomwolf committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
520
521
522
523
524
525
526
527
528
529
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to hidden_states
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span: 
            **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
                Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
                1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        """
        slen, hsz = hidden_states.shape[-2:]
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        """
        Args:
            One of ``start_states``, ``start_positions`` should be not None.
            If both are set, ``start_positions`` overrides ``start_states``.

            **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``.
                hidden states of the first tokens for the labeled span.
            **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
                position of the first token for the labeled span.
            **cls_index**: torch.LongTensor of shape ``(batch_size,)``
                position of the CLS token. If None, take the last token.

            note(Original repo):
                no dependency on end_feature so that we can obtain one single `cls_logits`
                for each sample
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        """
        slen, hsz = hidden_states.shape[-2:]
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    r""" A SQuAD head inspired by XLNet.

    Parameters:
        config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model.

    Inputs:
        **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)``
            hidden states of sequence tokens
        **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the first token for the labeled span.
        **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
            position of the last token for the labeled span.
        **cls_index**: torch.LongTensor of shape ``(batch_size,)``
            position of the CLS token. If None, take the last token.
        **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)``
            Whether the question has a possible answer in the paragraph or not.
        **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
            Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
            1.0 means token should be masked.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.
        **last_hidden_state**: `(`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) `torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **mems**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
thomwolf's avatar
thomwolf committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    """
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    def forward(self, hidden_states, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None):
        outputs = ()

thomwolf's avatar
thomwolf committed
637
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
661
662

            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
689
        # or (if labels are provided) (total_loss,)
thomwolf's avatar
thomwolf committed
690
691
692
693
        return outputs


class SequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
694
    r""" Compute a single vector summary of a sequence hidden states according to various possibilities:
thomwolf's avatar
thomwolf committed
695
696
697
698
699
700
701
702
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
                - 'token_ids' => supply a Tensor of classification token indices (GPT/GPT-2)
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
703
704
705
706
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default 
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
707
708
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
709
710
711
712
713
714
715
716
717
718
719
        super(SequenceSummary, self).__init__()

        self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
        if config.summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

        self.summary = nn.Identity()
        if hasattr(config, 'summary_use_proj') and config.summary_use_proj:
720
721
            if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
722
723
724
725
726
727
728
729
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

        self.activation = nn.Identity()
        if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh':
            self.activation = nn.Tanh()

730
731
732
733
734
735
736
        self.first_dropout = nn.Identity()
        if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

        self.last_dropout = nn.Identity()
        if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

    def forward(self, hidden_states, token_ids=None):
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
            token_ids: [optional] index of the classification token if summary_type == 'token_ids',
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
                if summary_type == 'token_ids' and token_ids is None:
                    we take the last token of the sequence as classification token
        """
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
        elif self.summary_type == 'token_ids':
            if token_ids is None:
                token_ids = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long)
            else:
                token_ids = token_ids.unsqueeze(-1).unsqueeze(-1)
                token_ids = token_ids.expand((-1,) * (token_ids.dim()-1) + (hidden_states.size(-1),))
            # shape of token_ids: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, token_ids).squeeze(-2) # shape (bsz, XX, hidden_size)
        elif self.summary_type == 'attn':
            raise NotImplementedError

762
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
763
764
        output = self.summary(output)
        output = self.activation(output)
765
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
766
767
768
769

        return output


770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
817
818
819
820
821
822
823
824
825
826
827
828
829


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))