modeling_utils.py 33.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import os
import json
import copy
thomwolf's avatar
thomwolf committed
24
from io import open
25
26
27

import torch
from torch import nn
28
from torch.nn import CrossEntropyLoss, functional as F
29
30
31
32
33
34
35

from .file_utils import cached_path

logger = logging.getLogger(__name__)

CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
36
TF_WEIGHTS_NAME = 'model.ckpt'
37
38
39
40
41
42
43


class PretrainedConfig(object):
    """ An abstract class to handle dowloading a model pretrained config.
    """
    pretrained_config_archive_map = {}

thomwolf's avatar
thomwolf committed
44
45
46
47
48
    def __init__(self, **kwargs):
        self.finetuning_task = kwargs.pop('finetuning_task', None)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.output_attentions = kwargs.pop('output_attentions', False)
        self.output_hidden_states = kwargs.pop('output_hidden_states', False)
49
        self.torchscript = kwargs.pop('torchscript', False)
thomwolf's avatar
thomwolf committed
50

thomwolf's avatar
thomwolf committed
51
52
53
54
55
56
57
58
59
60
61
    def save_pretrained(self, save_directory):
        """ Save a configuration file to a directory, so that it
            can be re-loaded using the `from_pretrained(save_directory)` class method.
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # If we save using the predefined names, we can load using `from_pretrained`
        output_config_file = os.path.join(save_directory, CONFIG_NAME)

        self.to_json_file(output_config_file)

62
    @classmethod
63
    def from_pretrained(cls, pretrained_model_name_or_path, *input, **kwargs):
64
65
66
67
68
69
70
        """
        Instantiate a PretrainedConfig from a pre-trained model configuration.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `xlnet-large-cased`
thomwolf's avatar
thomwolf committed
71
72
                - a path or url to a directory containing a configuration file `config.json` for the model,
                - a path or url to a configuration file for the model.
73
74
            cache_dir: an optional path to a folder in which the pre-trained model configuration will be cached.
        """
75
        cache_dir = kwargs.pop('cache_dir', None)
76
77
78

        if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
            config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
79
        elif os.path.isdir(pretrained_model_name_or_path):
80
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
81
82
        else:
            config_file = pretrained_model_name_or_path
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        # redirect to the cache, if necessary
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_config_archive_map.keys()),
                        config_file))
            return None
        if resolved_config_file == config_file:
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))

        # Load config
        config = cls.from_json_file(resolved_config_file)

        # Update config with kwargs if needed
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

thomwolf's avatar
thomwolf committed
118
        logger.info("Model config %s", config)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        return config

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `Config` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
136
137
138
    def __eq__(self, other):
        return self.__dict__ == other.__dict__

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


157
class PreTrainedModel(nn.Module):
thomwolf's avatar
thomwolf committed
158
    """ An abstract class to handle storing model config and
159
160
161
162
163
164
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = PretrainedConfig
    pretrained_model_archive_map = {}
    load_tf_weights = lambda model, config, path: None
    base_model_prefix = ""
thomwolf's avatar
thomwolf committed
165
    input_embeddings = None
166
167
168
169
170
171
172
173
174
175

    def __init__(self, config, *inputs, **kwargs):
        super(PreTrainedModel, self).__init__()
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
thomwolf's avatar
thomwolf committed
176
        # Save config in model
177
178
        self.config = config

thomwolf's avatar
thomwolf committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
        """ Build a resized Embedding Module from a provided token Embedding Module.
            Increasing the size will add newly initialized vectors at the end
            Reducing the size will remove vectors from the end

        Args:
            new_num_tokens: (Optional) New number of tokens in the embedding matrix.
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
                If not provided or None: return the provided token Embedding Module.
        Return:
            Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None
        """
        if new_num_tokens is None:
            return old_embeddings

thomwolf's avatar
thomwolf committed
195
        old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
thomwolf's avatar
thomwolf committed
196
197
198
199
        if old_num_tokens == new_num_tokens:
            return old_embeddings

        # Build new embeddings
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
206
207
208
209
210
211
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(old_embeddings.weight.device)

        # initialize all new embeddings (in particular added tokens)
        self.init_weights(new_embeddings)

        # Copy word embeddings from the previous weights
        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
        new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :]

        return new_embeddings

thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
    def _tie_or_clone_weights(self, first_module, second_module):
        """ Tie or clone module weights depending of weither we are using TorchScript or not
        """
        if self.config.torchscript:
            first_module.weight = nn.Parameter(second_module.weight.clone())
        else:
            first_module.weight = second_module.weight

    def resize_token_embeddings(self, new_num_tokens=None):
        """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
thomwolf's avatar
thomwolf committed
222
223

        Args:
thomwolf's avatar
thomwolf committed
224
            new_num_tokens: (Optional) New number of tokens in the embedding matrix.
thomwolf's avatar
thomwolf committed
225
226
                Increasing the size will add newly initialized vectors at the end
                Reducing the size will remove vectors from the end
thomwolf's avatar
thomwolf committed
227
228
229
                If not provided or None: does nothing.
        Return:
            Pointer to the input tokens Embedding Module of the model
thomwolf's avatar
thomwolf committed
230
231
        """
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
thomwolf's avatar
thomwolf committed
232
233
234
        model_embeds = base_model._resize_token_embeddings(new_num_tokens)
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
235
236
237
238
239
240
241
242
243

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
        base_model.vocab_size = new_num_tokens

        # Tie weights again if needed
        if hasattr(self, 'tie_weights'):
            self.tie_weights()

thomwolf's avatar
thomwolf committed
244
245
        return model_embeds

thomwolf's avatar
thomwolf committed
246
247
248
249
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the base model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
thomwolf's avatar
thomwolf committed
250
251
        base_model = getattr(self, self.base_model_prefix, self)  # get the base model if needed
        base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
252

253
254
255
256
257
258
259
260
261
    def save_pretrained(self, save_directory):
        """ Save a model with its configuration file to a directory, so that it
            can be re-loaded using the `from_pretrained(save_directory)` class method.
        """
        assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"

        # Only save the model it-self if we are using distributed training
        model_to_save = self.module if hasattr(self, 'module') else self

thomwolf's avatar
thomwolf committed
262
263
264
        # Save configuration file
        model_to_save.config.save_pretrained(save_directory)

265
266
267
268
269
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        """
        Instantiate a PreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load, or
                - a path or url to a pretrained model archive containing:
                    . `config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
                - a path or url to a tensorflow pretrained model checkpoint containing:
                    . `config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
285
            config: an optional configuration for the model
286
287
288
289
290
291
292
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use
                instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific XLNet class
                (ex: num_labels for XLNetForSequenceClassification)
        """
thomwolf's avatar
thomwolf committed
293
        config = kwargs.pop('config', None)
thomwolf's avatar
thomwolf committed
294
295
        state_dict = kwargs.pop('state_dict', None)
        cache_dir = kwargs.pop('cache_dir', None)
thomwolf's avatar
thomwolf committed
296
297
        from_tf = kwargs.pop('from_tf', False)
        output_loading_info = kwargs.pop('output_loading_info', False)
thomwolf's avatar
thomwolf committed
298
299

        # Load config
thomwolf's avatar
thomwolf committed
300
301
        if config is None:
            config = cls.config_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
302

thomwolf's avatar
thomwolf committed
303
        # Load model
304
305
        if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
            archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
306
        elif os.path.isdir(pretrained_model_name_or_path):
307
308
309
310
311
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
312
313
314
315
316
317
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = pretrained_model_name_or_path
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(cls.pretrained_model_archive_map.keys()),
                        archive_file))
            return None
thomwolf's avatar
thomwolf committed
335
        if resolved_archive_file == archive_file:
336
337
338
339
340
341
            logger.info("loading weights file {}".format(archive_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))

        # Instantiate model.
thomwolf's avatar
thomwolf committed
342
343
        model = cls(config)

344
345
346
347
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
348
            return cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
349

thomwolf's avatar
thomwolf committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')

thomwolf's avatar
thomwolf committed
383
        # Make sure we are able to load base models as well as derived models (with heads)
384
        start_prefix = ''
thomwolf's avatar
thomwolf committed
385
        model_to_load = model
386
        if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
thomwolf's avatar
thomwolf committed
387
388
389
390
391
            start_prefix = cls.base_model_prefix + '.'
        if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()):
            model_to_load = getattr(model, cls.base_model_prefix)

        load(model_to_load, prefix=start_prefix)
392
393
394
395
396
397
398
399
400
401
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))

thomwolf's avatar
thomwolf committed
402
        if hasattr(model, 'tie_weights'):
403
404
            model.tie_weights()  # make sure word embedding weights are still tied

thomwolf's avatar
thomwolf committed
405
406
407
408
        if output_loading_info:
            loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs}
            return model, loading_info

409
410
411
        return model


thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
class Conv1D(nn.Module):
    def __init__(self, nf, nx):
        """ Conv1D layer as defined by Alec for GPT (and also used in GPT-2)
            Basically works like a Linear layer but the weights are transposed
        """
        super(Conv1D, self).__init__()
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
431
432
class PoolerStartLogits(nn.Module):
    """ Compute SQuAD start_logits from sequence hidden states. """
thomwolf's avatar
thomwolf committed
433
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
434
435
436
437
438
439
440
        super(PoolerStartLogits, self).__init__()
        self.dense = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, p_mask=None):
        """ Args:
            `p_mask`: [optional] invalid position mask such as query and special symbols (PAD, SEP, CLS)
                shape [batch_size, seq_len]. 1.0 means token should be masked.
thomwolf's avatar
thomwolf committed
441
        """
thomwolf's avatar
thomwolf committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerEndLogits(nn.Module):
    """ Compute SQuAD end_logits from sequence hidden states and start token hidden state.
    """
    def __init__(self, config):
        super(PoolerEndLogits, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

    def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None):
        """ Args:
            One of start_states, start_positions should be not None. If both are set, start_positions overrides start_states.
            `start_states`: hidden states of the first tokens for the labeled span: torch.LongTensor of shape identical to hidden_states.
            `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            `p_mask`: [optional] invalid position mask such as query and special symbols (PAD, SEP, CLS)
                shape [batch_size, seq_len]. 1.0 means token should be masked.
        """
        slen, hsz = hidden_states.shape[-2:]
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
            x = x * (1 - p_mask) - 1e30 * p_mask

        return x


class PoolerAnswerClass(nn.Module):
    """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
    def __init__(self, config):
        super(PoolerAnswerClass, self).__init__()
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

    def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None):
        """ Args:
            One of start_states, start_positions should be not None. If both are set, start_positions overrides start_states.
            `start_states`: hidden states of the first tokens for the labeled span: torch.LongTensor of shape identical to hidden_states.
            `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            `cls_index`: position of the CLS token: torch.LongTensor of shape [batch_size]. If None, take the last token.

            # note(zhiliny): no dependency on end_feature so that we can obtain one single `cls_logits` for each sample
        """
        slen, hsz = hidden_states.shape[-2:]
        assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None"
        if start_positions is not None:
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)

        if cls_index is not None:
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
        else:
            cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


class SQuADHead(nn.Module):
    """ A SQuAD head inspired by XLNet.
        Compute
    """
    def __init__(self, config):
        super(SQuADHead, self).__init__()
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

    def forward(self, hidden_states, start_positions=None, end_positions=None,
                cls_index=None, is_impossible=None, p_mask=None):
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
        """
        outputs = ()

        start_logits = self.start_logits(hidden_states, p_mask)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
                outputs = (total_loss, start_logits, end_logits, cls_logits) + outputs
            else:
                outputs = (total_loss, start_logits, end_logits) + outputs

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits
        # or (if labels are provided) total_loss, start_logits, end_logits, (cls_logits)
        return outputs


class SequenceSummary(nn.Module):
    """ Compute a single vector summary of a sequence hidden states according to various possibilities:
        Args of the config class:
            summary_type:
                - 'last' => [default] take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
                - 'token_ids' => supply a Tensor of classification token indices (GPT/GPT-2)
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj: Add a projection after the vector extraction
608
609
610
611
            summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
            summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default 
            summary_first_dropout: Add a dropout before the projection and activation
            summary_last_dropout: Add a dropout after the projection and activation
thomwolf's avatar
thomwolf committed
612
613
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
614
615
616
617
618
619
620
621
622
623
624
        super(SequenceSummary, self).__init__()

        self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
        if config.summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

        self.summary = nn.Identity()
        if hasattr(config, 'summary_use_proj') and config.summary_use_proj:
625
626
            if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0:
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
627
628
629
630
631
632
633
634
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

        self.activation = nn.Identity()
        if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh':
            self.activation = nn.Tanh()

635
636
637
638
639
640
641
        self.first_dropout = nn.Identity()
        if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0:
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

        self.last_dropout = nn.Identity()
        if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0:
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

    def forward(self, hidden_states, token_ids=None):
        """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer.
            token_ids: [optional] index of the classification token if summary_type == 'token_ids',
                shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states.
                if summary_type == 'token_ids' and token_ids is None:
                    we take the last token of the sequence as classification token
        """
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
        elif self.summary_type == 'token_ids':
            if token_ids is None:
                token_ids = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long)
            else:
                token_ids = token_ids.unsqueeze(-1).unsqueeze(-1)
                token_ids = token_ids.expand((-1,) * (token_ids.dim()-1) + (hidden_states.size(-1),))
            # shape of token_ids: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
            output = hidden_states.gather(-2, token_ids).squeeze(-2) # shape (bsz, XX, hidden_size)
        elif self.summary_type == 'attn':
            raise NotImplementedError

667
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
668
669
        output = self.summary(output)
        output = self.activation(output)
670
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
671
672
673
674

        return output


675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def prune_conv1d_layer(layer, index, dim=1):
    """ Prune a Conv1D layer (a model parameters) to keep only entries in index.
        A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
722
723
724
725
726
727
728
729
730
731
732
733
734


def prune_layer(layer, index, dim=None):
    """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
        raise ValueError("Can't prune layer of class {}".format(layer.__class__))