run_squad.py 34.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForQuestionAnswering,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
41
42
43
    CamembertConfig,
    CamembertForQuestionAnswering,
    CamembertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
44
45
46
47
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
    RobertaConfig,
48
49
50
51
52
53
54
55
    RobertaForQuestionAnswering,
    RobertaTokenizer,
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
56
57
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
58
)
Aymeric Augustin's avatar
Aymeric Augustin committed
59
60
61
62
63
64
65
66
67
68
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
69
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
70
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
71

72
73
74

logger = logging.getLogger(__name__)

75
ALL_MODELS = sum(
76
77
78
79
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, CamembertConfig, RobertaConfig, XLNetConfig, XLMConfig)
    ),
80
81
    (),
)
thomwolf's avatar
thomwolf committed
82
83

MODEL_CLASSES = {
84
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
85
    "camembert": (CamembertConfig, CamembertForQuestionAnswering, CamembertTokenizer),
86
87
88
89
90
    "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
91
92
}

93

thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

101

102
103
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
104

105

106
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
107
108
109
110
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

111
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
112
113
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
114
115

    if args.max_steps > 0:
116
        t_total = args.max_steps
117
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
118
    else:
119
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
120

121
    # Prepare optimizer and schedule (linear warmup and decay)
122
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
123
    optimizer_grouped_parameters = [
124
125
126
127
128
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
129
    ]
130
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
131
    scheduler = get_linear_schedule_with_warmup(
132
133
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
134
135

    # Check if saved optimizer or scheduler states exist
136
137
138
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
139
        # Load in optimizer and scheduler states
140
141
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
142

thomwolf's avatar
thomwolf committed
143
144
145
146
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
147
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
148

149
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
150

151
152
153
154
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
155
156
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
157
158
159
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
160

thomwolf's avatar
thomwolf committed
161
162
163
164
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
165
166
167
168
169
170
171
172
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
173
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
174

Lysandre's avatar
Lysandre committed
175
    global_step = 1
176
177
178
179
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
180
181
182
183
184
185
186
187
188
189
190
191
192
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
193

thomwolf's avatar
thomwolf committed
194
    tr_loss, logging_loss = 0.0, 0.0
195
    model.zero_grad()
196
197
198
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
199
    # Added here for reproductibility
200
201
    set_seed(args)

202
    for _ in train_iterator:
203
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
204
        for step, batch in enumerate(epoch_iterator):
205
206
207
208
209
210

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

211
            model.train()
thomwolf's avatar
thomwolf committed
212
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
213
214

            inputs = {
215
216
                "input_ids": batch[0],
                "attention_mask": batch[1],
217
                "token_type_ids": batch[2],
218
219
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
220
221
            }

222
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
223
224
                del inputs["token_type_ids"]

225
226
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
227
                if args.version_2_with_negative:
228
                    inputs.update({"is_impossible": batch[7]})
229
230
231
232
233
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )

Peiqin Lin's avatar
typos  
Peiqin Lin committed
234
            outputs = model(**inputs)
235
236
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
237

238
            if args.n_gpu > 1:
239
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
240
241
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
242

243
244
245
246
247
248
249
250
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
251
                if args.fp16:
252
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
253
                else:
254
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
255

256
                optimizer.step()
257
                scheduler.step()  # Update learning rate schedule
258
259
260
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
261
                # Log metrics
262
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
263
264
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
265
266
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
267
268
269
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
270
271
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
272
                # Save model checkpoint
273
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
274
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
275
276
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
277
                    # Take care of distributed/parallel training
278
                    model_to_save = model.module if hasattr(model, "module") else model
279
                    model_to_save.save_pretrained(output_dir)
280
281
                    tokenizer.save_pretrained(output_dir)

282
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
283
284
                    logger.info("Saving model checkpoint to %s", output_dir)

285
286
287
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
288

289
290
291
292
293
294
295
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
296
297
298
    if args.local_rank in [-1, 0]:
        tb_writer.close()

299
300
301
302
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
303
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
304
305
306
307
308

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
309

310
    # Note that DistributedSampler samples randomly
311
    eval_sampler = SequentialSampler(dataset)
312
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
313

ronakice's avatar
ronakice committed
314
    # multi-gpu evaluate
315
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
316
317
        model = torch.nn.DataParallel(model)

318
319
320
321
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
322

323
    all_results = []
324
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
325

326
327
328
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
329

330
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
331
            inputs = {
332
333
                "input_ids": batch[0],
                "attention_mask": batch[1],
334
                "token_type_ids": batch[2],
LysandreJik's avatar
LysandreJik committed
335
            }
336

337
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
338
339
                del inputs["token_type_ids"]

340
            example_indices = batch[3]
341

LysandreJik's avatar
Cleanup  
LysandreJik committed
342
            # XLNet and XLM use more arguments for their predictions
343
344
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
345
346
347
348
349
                # for lang_id-sensitive xlm models
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )
LysandreJik's avatar
Cleanup  
LysandreJik committed
350

351
352
353
354
355
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
356

LysandreJik's avatar
LysandreJik committed
357
358
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
359
360
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
361
362
363
364
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
365
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
366
367
368
                cls_logits = output[4]

                result = SquadResult(
369
370
371
                    unique_id,
                    start_logits,
                    end_logits,
372
373
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
374
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
375
376
377
378
                )

            else:
                start_logits, end_logits = output
379
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
380

381
            all_results.append(result)
382

383
    evalTime = timeit.default_timer() - start_time
384
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
385

thomwolf's avatar
thomwolf committed
386
    # Compute predictions
387
388
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
389

390
    if args.version_2_with_negative:
391
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
392
393
    else:
        output_null_log_odds_file = None
394

LysandreJik's avatar
Cleanup  
LysandreJik committed
395
    # XLNet and XLM use a more complex post-processing procedure
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
415
    else:
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
431

LysandreJik's avatar
Cleanup  
LysandreJik committed
432
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
433
    results = squad_evaluate(examples, predictions)
434
435
    return results

436

437
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
438
    if args.local_rank not in [-1, 0] and not evaluate:
439
440
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
441

442
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
443
    input_dir = args.data_dir if args.data_dir else "."
444
445
446
447
448
449
450
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
451
452
453
    )

    # Init features and dataset from cache if it exists
454
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
455
        logger.info("Loading features from cached file %s", cached_features_file)
456
        features_and_dataset = torch.load(cached_features_file)
457
458
459
460
461
        features, dataset, examples = (
            features_and_dataset["features"],
            features_and_dataset["dataset"],
            features_and_dataset["examples"],
        )
thomwolf's avatar
thomwolf committed
462
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
463
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
464

465
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
466
467
468
            try:
                import tensorflow_datasets as tfds
            except ImportError:
469
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
470
471

            if args.version_2_with_negative:
472
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
473
474

            tfds_examples = tfds.load("squad")
475
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
476
477
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
478
479
480
481
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
482

483
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
484
485
486
487
488
489
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
490
            return_dataset="pt",
erenup's avatar
erenup committed
491
            threads=args.threads,
Lysandre's avatar
Lysandre committed
492
493
        )

thomwolf's avatar
thomwolf committed
494
        if args.local_rank in [-1, 0]:
495
            logger.info("Saving features into cached file %s", cached_features_file)
496
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
thomwolf's avatar
thomwolf committed
497

VictorSanh's avatar
VictorSanh committed
498
    if args.local_rank == 0 and not evaluate:
499
500
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
501

502
503
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
504
505
    return dataset

506
507
508
509

def main():
    parser = argparse.ArgumentParser()

510
    # Required parameters
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
532

533
    # Other parameters
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
606
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )
655
656
657
658
659
660
    parser.add_argument(
        "--lang_id",
        default=0,
        type=int,
        help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
    )
661

662
663
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
695
696
    args = parser.parse_args()

697
698
699
700
701
702
703
    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

704
705
706
707
708
709
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
710
        raise ValueError(
711
712
713
714
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
715

716
    # Setup distant debugging if needed
717
718
719
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
720

721
        print("Waiting for debugger attach")
722
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
723
724
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
725
    # Setup CUDA, GPU & distributed training
726
    if args.local_rank == -1 or args.no_cuda:
727
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
728
729
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
730
731
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
732
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
733
734
        args.n_gpu = 1
    args.device = device
735

thomwolf's avatar
thomwolf committed
736
    # Setup logging
737
738
739
740
741
742
743
744
745
746
747
748
749
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
750

751
752
    # Set seed
    set_seed(args)
753

thomwolf's avatar
thomwolf committed
754
    # Load pretrained model and tokenizer
755
    if args.local_rank not in [-1, 0]:
756
757
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
758

759
    args.model_type = args.model_type.lower()
760
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
776
777

    if args.local_rank == 0:
778
779
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
780

thomwolf's avatar
thomwolf committed
781
    model.to(args.device)
782

783
784
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
785
786
787
788
789
790
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
791
792

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
793
        except ImportError:
794
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
795

thomwolf's avatar
thomwolf committed
796
    # Training
797
    if args.do_train:
798
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
799
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
800
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
801

thomwolf's avatar
thomwolf committed
802
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
803
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
804
805
806
807
808
809
810
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
811
        # Take care of distributed/parallel training
812
        model_to_save = model.module if hasattr(model, "module") else model
813
814
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
815
816

        # Good practice: save your training arguments together with the trained model
817
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
818

819
        # Load a trained model and vocabulary that you have fine-tuned
820
        model = model_class.from_pretrained(args.output_dir)  # , force_download=True)
821
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
822
823
        model.to(args.device)

thomwolf's avatar
thomwolf committed
824
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
825
826
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
827
828
829
830
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
831
832
833
834
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
835
836
837
838
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
839

840
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
841

842
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
843
            # Reload the model
844
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
845
            model = model_class.from_pretrained(checkpoint)  # , force_download=True)
846
            model.to(args.device)
thomwolf's avatar
thomwolf committed
847
848

            # Evaluate
849
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
850

851
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
852
            results.update(result)
thomwolf's avatar
thomwolf committed
853

854
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
855

856
    return results
857
858
859
860


if __name__ == "__main__":
    main()