run_mlm.py 27.7 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
28
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
30
31
from typing import Optional

32
import datasets
33
import evaluate
34
from datasets import load_dataset
35
36
37
38
39
40
41
42
43
44
45
46

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
47
    is_torch_tpu_available,
48
49
    set_seed,
)
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, send_example_telemetry
52
from transformers.utils.versions import require_version
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
56
check_min_version("4.27.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
74
            "help": (
75
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
76
            )
77
78
79
80
81
82
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
83
84
85
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
89
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
90
91
        },
    )
92
93
94
95
96
97
98
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
99
100
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
101
102
103
104
105
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
106
107
108
109
110
111
112
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
113
            "help": (
114
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
                "with private models)."
            )
117
118
        },
    )
119

120
121
122
123
124
125
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
147
148
149
150
151
152
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
153
154
155
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
160
161
162
163
164
165
166
167
168
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
169
170
171
172
173
174
175
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
176
177
178
179
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
180
181
        },
    )
182
183
184
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
188
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
189
190
        },
    )
191
    max_eval_samples: Optional[int] = field(
192
193
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
198
199
        },
    )
200
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
201
202

    def __post_init__(self):
203
204
205
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

206
207
208
209
210
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
211
212
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
213
214
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
215
216
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

232
233
234
235
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

236
237
    # Setup logging
    logging.basicConfig(
238
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
239
        datefmt="%m/%d/%Y %H:%M:%S",
240
        handlers=[logging.StreamHandler(sys.stdout)],
241
    )
242

243
244
245
246
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

247
248
249
250
251
252
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
253
254
255
256
257
258
259

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
260
    logger.info(f"Training/evaluation parameters {training_args}")
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

277
278
279
280
281
282
283
284
285
286
287
288
289
290
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
291
        raw_datasets = load_dataset(
292
293
294
295
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
296
            streaming=data_args.streaming,
297
298
299
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
300
301
302
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
303
                cache_dir=model_args.cache_dir,
304
                use_auth_token=True if model_args.use_auth_token else None,
305
                streaming=data_args.streaming,
306
            )
307
            raw_datasets["train"] = load_dataset(
308
309
310
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
311
                cache_dir=model_args.cache_dir,
312
                use_auth_token=True if model_args.use_auth_token else None,
313
                streaming=data_args.streaming,
314
            )
315
316
317
318
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
319
            extension = data_args.train_file.split(".")[-1]
320
        if data_args.validation_file is not None:
321
            data_files["validation"] = data_args.validation_file
322
            extension = data_args.validation_file.split(".")[-1]
323
324
        if extension == "txt":
            extension = "text"
325
326
327
328
329
330
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
331
332
333
334
335
336
337
338

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
339
                use_auth_token=True if model_args.use_auth_token else None,
340
341
342
343
344
345
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
346
                use_auth_token=True if model_args.use_auth_token else None,
347
348
            )

349
350
351
352
353
354
355
356
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
357
358
359
360
361
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
362
    if model_args.config_name:
363
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
364
    elif model_args.model_name_or_path:
365
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
366
367
368
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
369
370
371
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
372
            logger.info(f"New config: {config}")
373

374
375
376
377
378
379
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
380
    if model_args.tokenizer_name:
381
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
382
    elif model_args.model_name_or_path:
383
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
384
385
386
387
388
389
390
391
392
393
394
395
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
396
397
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
398
399
400
401
402
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

403
404
405
406
407
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
408
409
410
411

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
412
        column_names = list(raw_datasets["train"].features)
413
    else:
414
        column_names = list(raw_datasets["validation"].features)
415
416
    text_column_name = "text" if "text" in column_names else column_names[0]

417
418
419
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
420
            logger.warning(
421
422
423
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
424
425
426
427
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
428
            logger.warning(
429
430
431
432
433
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

434
435
436
437
438
439
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
440
441
442
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
443
            return tokenizer(
444
                examples[text_column_name],
445
446
                padding=padding,
                truncation=True,
447
                max_length=max_seq_length,
448
449
450
451
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
452

453
        with training_args.main_process_first(desc="dataset map tokenization"):
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=[text_column_name],
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset line_by_line",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=[text_column_name],
                )
469
470
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
471
472
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
473
        def tokenize_function(examples):
474
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
475

476
        with training_args.main_process_first(desc="dataset map tokenization"):
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on every text in dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )
492
493
494
495
496

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
497
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
498
499
500
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
501
502
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
503
504
505
506
507
508
509
510
511
512
513
514
515
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
516

517
        with training_args.main_process_first(desc="grouping texts together"):
518
519
520
521
522
523
524
525
526
527
528
529
530
            if not data_args.streaming:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {max_seq_length}",
                )
            else:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                )
531

532
533
534
535
536
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
537
538
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
539
540
541
542
543

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
544
        if data_args.max_eval_samples is not None:
545
546
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
547

548
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
549
550
551
552
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
553
554
            return logits.argmax(dim=-1)

555
        metric = evaluate.load("accuracy")
556
557
558
559
560
561
562
563
564
565
566
567

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

568
569
    # Data collator
    # This one will take care of randomly masking the tokens.
570
571
572
573
574
575
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
576
577
578
579
580

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
581
582
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
583
584
        tokenizer=tokenizer,
        data_collator=data_collator,
585
586
587
588
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
589
590
591
592
    )

    # Training
    if training_args.do_train:
593
594
595
596
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
597
598
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
599
        trainer.save_model()  # Saves the tokenizer too for easy upload
600
        metrics = train_result.metrics
601

602
603
604
605
606
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

607
608
609
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
610

611
612
613
614
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

615
        metrics = trainer.evaluate()
616

617
618
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
619
620
621
622
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
623
        metrics["perplexity"] = perplexity
624

625
626
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
627

628
629
630
631
632
633
634
635
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
636

637
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
638
        trainer.push_to_hub(**kwargs)
639
640
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
641

642
643
644
645
646
647
648
649

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()