run_glue.py 27.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
31
32
33
34
35
36

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
37
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
38

39
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
40
                                  BertForSequenceClassification, BertTokenizer,
41
42
43
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
44
45
46
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
47
48
49
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
Lysandre's avatar
Lysandre committed
50
51
52
53
54
                                  DistilBertTokenizer,
                                  AlbertConfig,
                                  AlbertForSequenceClassification, 
                                  AlbertTokenizer,
                                )
thomwolf's avatar
thomwolf committed
55

56
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
57

58
59
60
61
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
62
63
64

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
65
66
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
67
68

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
69
70
71
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
72
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
Lysandre's avatar
Lysandre committed
73
74
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer)
75
}
thomwolf's avatar
thomwolf committed
76

thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
86
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
87
88
89
90
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
91
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
92
93
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
94

thomwolf's avatar
thomwolf committed
95
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
96
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
97
98
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
99
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
100

thomwolf's avatar
thomwolf committed
101
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
102
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
103
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
104
105
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
106
        ]
Lysandre's avatar
Lysandre committed
107

thomwolf's avatar
thomwolf committed
108
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
109
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
110
111
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
112
            from apex import amp
thomwolf's avatar
thomwolf committed
113
114
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
115
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
116

117
118
119
120
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
127
128
    # Train!
    logger.info("***** Running training *****")
129
130
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
131
132
133
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
134
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
135
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
136
137

    global_step = 0
thomwolf's avatar
thomwolf committed
138
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
139
    model.zero_grad()
thomwolf's avatar
thomwolf committed
140
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
141
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
142
143
144
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
145
            model.train()
thomwolf's avatar
thomwolf committed
146
            batch = tuple(t.to(args.device) for t in batch)
147
148
149
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
150
151
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
152
            outputs = model(**inputs)
153
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
154
155
156
157
158
159

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
160
161
162
163
164
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
165
166

            tr_loss += loss.item()
167
            if (step + 1) % args.gradient_accumulation_steps == 0:
168
169
170
171
172
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
173
                optimizer.step()
thomwolf's avatar
thomwolf committed
174
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
175
                model.zero_grad()
thomwolf's avatar
thomwolf committed
176
                global_step += 1
thomwolf's avatar
thomwolf committed
177

thomwolf's avatar
thomwolf committed
178
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
179
                    # Log metrics
thomwolf's avatar
thomwolf committed
180
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
181
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
182
183
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
184
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
185
186
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
193
194
195

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
196
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
197

thomwolf's avatar
thomwolf committed
198
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
199
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
200
201
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
202
            train_iterator.close()
thomwolf's avatar
thomwolf committed
203
            break
thomwolf's avatar
thomwolf committed
204

thomwolf's avatar
thomwolf committed
205
206
207
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
208
209
210
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
211
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
223
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
224
225
226
227
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
228
229
230
231
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
232
        # Eval!
thomwolf's avatar
thomwolf committed
233
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
234
235
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
236
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
237
238
239
240
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
241
            model.eval()
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
248
249
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
250
251
252
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
253
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

270
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
271
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
272
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
273
274
275
276
277
278
279
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
280
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
281
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
282
283
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
284
    processor = processors[task]()
285
286
287
288
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
289
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
290
291
        str(args.max_seq_length),
        str(task)))
292
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
293
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
294
295
        features = torch.load(cached_features_file)
    else:
296
297
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
298
299
300
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
301
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
302
303
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
304
305
306
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
307
308
309
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
310
        )
311
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
312
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
313
314
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
315
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
316
317
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

318
319
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
320
321
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
322
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
323
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
324
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
325
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
Lysandre's avatar
Lysandre committed
326
 
thomwolf's avatar
thomwolf committed
327
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
328
    return dataset
thomwolf's avatar
thomwolf committed
329
330


thomwolf's avatar
thomwolf committed
331
332
333
334
335
336
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
337
338
339
340
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
341
    parser.add_argument("--task_name", default=None, type=str, required=True,
342
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
343
344
345
346
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
347
348
349
350
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
351
352
353
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
354
355
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
356
357
358
359
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
360
361
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
362
363
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
364
365

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
366
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
367
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
368
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
369
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
Lysandre's avatar
Lysandre committed
370
                        help="Number of updates steps to accumulate before performing a backward/update pass.")     
thomwolf's avatar
thomwolf committed
371
372
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
373
374
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
375
376
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
377
378
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
379
380
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
381
382
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
383
384
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
385

thomwolf's avatar
thomwolf committed
386
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
387
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
388
389
390
391
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
392
393
394
395
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
396
397
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
398
399
400
401
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
402
403
404
405
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
406
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
407
408
409
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
410
411
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
412
413
414
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
415
416
417
418
419
420
421
422
423
424
425
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
426
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
427
428
429
430
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
431
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
432
433
434
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
435
436
437
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
438
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
439
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
440

thomwolf's avatar
thomwolf committed
441
442
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
443
444

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
445
446
447
448
449
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
450
451
452
453
454
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
455
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
456

457
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
458
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
459
460
461
462
463
464
465
466
467
468
469
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
470
471

    if args.local_rank == 0:
472
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
473

thomwolf's avatar
thomwolf committed
474
    model.to(args.device)
thomwolf's avatar
thomwolf committed
475

thomwolf's avatar
thomwolf committed
476
477
    logger.info("Training/evaluation parameters %s", args)

478

thomwolf's avatar
thomwolf committed
479
    # Training
thomwolf's avatar
thomwolf committed
480
    if args.do_train:
481
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
482
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
483
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
484
485


thomwolf's avatar
thomwolf committed
486
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
487
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
488
489
490
491
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
492
        logger.info("Saving model checkpoint to %s", args.output_dir)
493
494
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
495
496
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
497
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
498
499

        # Good practice: save your training arguments together with the trained model
500
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
501

502
        # Load a trained model and vocabulary that you have fine-tuned
503
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
504
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
505
        model.to(args.device)
thomwolf's avatar
thomwolf committed
506

507

thomwolf's avatar
thomwolf committed
508
    # Evaluation
thomwolf's avatar
thomwolf committed
509
    results = {}
thomwolf's avatar
thomwolf committed
510
    if args.do_eval and args.local_rank in [-1, 0]:
511
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
512
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
513
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
514
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
515
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
516
517
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
518
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
519
520
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
521
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
522
            model.to(args.device)
523
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
524
525
526
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
527
    return results
thomwolf's avatar
thomwolf committed
528
529
530
531


if __name__ == "__main__":
    main()