"docs/source/en/model_doc/deberta-v2.mdx" did not exist on "d0422de5634d3b14ac5159d7f8a2ab9336821d22"
run_mlm.py 28.1 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
https://huggingface.co/models?filter=fill-mask
21
22
23
24
25
26
27
28
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
29
from itertools import chain
30
31
from typing import Optional

32
import datasets
33
import evaluate
34
from datasets import load_dataset
35
36
37
38
39
40
41
42
43
44
45
46

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_MASKED_LM_MAPPING,
    AutoConfig,
    AutoModelForMaskedLM,
    AutoTokenizer,
    DataCollatorForLanguageModeling,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
47
    is_torch_tpu_available,
48
49
    set_seed,
)
50
from transformers.trainer_utils import get_last_checkpoint
51
from transformers.utils import check_min_version, send_example_telemetry
52
from transformers.utils.versions import require_version
53
54


55
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
56
check_min_version("4.31.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
57

58
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
74
            "help": (
75
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
76
            )
77
78
79
80
81
82
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
83
84
85
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
89
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
90
91
        },
    )
92
93
94
95
96
97
98
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
99
100
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
101
102
103
104
105
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
106
107
108
109
110
111
112
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
113
            "help": (
114
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
115
116
                "with private models)."
            )
117
118
        },
    )
119
120
121
122
123
124
125
126
127
    low_cpu_mem_usage: bool = field(
        default=False,
        metadata={
            "help": (
                "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
                "set True will benefit LLM loading time and RAM consumption."
            )
        },
    )
128

129
130
131
132
133
134
    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
156
157
158
159
160
161
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
162
163
164
    max_seq_length: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated."
            )
169
170
171
172
173
174
175
176
177
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
    )
178
179
180
181
182
183
184
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
188
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
189
190
        },
    )
191
192
193
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
194
195
196
197
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
198
199
        },
    )
200
    max_eval_samples: Optional[int] = field(
201
202
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
203
204
205
206
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
207
208
        },
    )
209
    streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
210
211

    def __post_init__(self):
212
213
214
        if self.streaming:
            require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")

215
216
217
218
219
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
220
221
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`train_file` should be a csv, a json or a txt file.")
222
223
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
224
225
                if extension not in ["csv", "json", "txt"]:
                    raise ValueError("`validation_file` should be a csv, a json or a txt file.")
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

241
242
243
244
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mlm", model_args, data_args)

245
246
    # Setup logging
    logging.basicConfig(
247
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
248
        datefmt="%m/%d/%Y %H:%M:%S",
249
        handlers=[logging.StreamHandler(sys.stdout)],
250
    )
251

252
253
254
255
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

256
257
258
259
260
261
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
262
263
264
265
266
267
268

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
269
    logger.info(f"Training/evaluation parameters {training_args}")
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

286
287
288
289
290
291
292
293
294
295
296
297
298
299
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
300
        raw_datasets = load_dataset(
301
302
303
304
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
305
            streaming=data_args.streaming,
306
307
308
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
309
310
311
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
312
                cache_dir=model_args.cache_dir,
313
                use_auth_token=True if model_args.use_auth_token else None,
314
                streaming=data_args.streaming,
315
            )
316
            raw_datasets["train"] = load_dataset(
317
318
319
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
320
                cache_dir=model_args.cache_dir,
321
                use_auth_token=True if model_args.use_auth_token else None,
322
                streaming=data_args.streaming,
323
            )
324
325
326
327
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
328
            extension = data_args.train_file.split(".")[-1]
329
        if data_args.validation_file is not None:
330
            data_files["validation"] = data_args.validation_file
331
            extension = data_args.validation_file.split(".")[-1]
332
333
        if extension == "txt":
            extension = "text"
334
335
336
337
338
339
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
340
341
342
343
344
345
346
347

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
348
                use_auth_token=True if model_args.use_auth_token else None,
349
350
351
352
353
354
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
355
                use_auth_token=True if model_args.use_auth_token else None,
356
357
            )

358
359
360
361
362
363
364
365
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
366
367
368
369
370
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
371
    if model_args.config_name:
372
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
373
    elif model_args.model_name_or_path:
374
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
375
376
377
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
378
379
380
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
381
            logger.info(f"New config: {config}")
382

383
384
385
386
387
388
    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
389
    if model_args.tokenizer_name:
390
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
391
    elif model_args.model_name_or_path:
392
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
393
394
395
396
397
398
399
400
401
402
403
404
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
405
406
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
407
            low_cpu_mem_usage=model_args.low_cpu_mem_usage,
408
409
410
411
412
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

413
414
415
416
417
    # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
    # on a small vocab and want a smaller embedding size, remove this test.
    embedding_size = model.get_input_embeddings().weight.shape[0]
    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))
418
419
420
421

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
422
        column_names = list(raw_datasets["train"].features)
423
    else:
424
        column_names = list(raw_datasets["validation"].features)
425
426
    text_column_name = "text" if "text" in column_names else column_names[0]

427
428
429
    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
430
            logger.warning(
431
432
433
                "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
                " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
                " override this default with `--block_size xxx`."
434
435
436
437
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
438
            logger.warning(
439
440
441
442
443
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

444
445
446
447
448
449
    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
450
451
452
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
453
            return tokenizer(
454
                examples[text_column_name],
455
456
                padding=padding,
                truncation=True,
457
                max_length=max_seq_length,
458
459
460
461
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )
462

463
        with training_args.main_process_first(desc="dataset map tokenization"):
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=[text_column_name],
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on dataset line_by_line",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=[text_column_name],
                )
479
480
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
481
482
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
483
        def tokenize_function(examples):
484
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
485

486
        with training_args.main_process_first(desc="dataset map tokenization"):
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            if not data_args.streaming:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    remove_columns=column_names,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Running tokenizer on every text in dataset",
                )
            else:
                tokenized_datasets = raw_datasets.map(
                    tokenize_function,
                    batched=True,
                    remove_columns=column_names,
                )
502
503
504
505
506

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
507
            concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
508
            total_length = len(concatenated_examples[list(examples.keys())[0]])
509
510
511
            # We drop the small remainder, and if the total_length < max_seq_length  we exclude this batch and return an empty dict.
            # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
512
513
514
515
516
517
518
519
520
521
522
523
524
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
525

526
        with training_args.main_process_first(desc="grouping texts together"):
527
528
529
530
531
532
533
534
535
536
537
538
539
            if not data_args.streaming:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc=f"Grouping texts in chunks of {max_seq_length}",
                )
            else:
                tokenized_datasets = tokenized_datasets.map(
                    group_texts,
                    batched=True,
                )
540

541
542
543
544
545
    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
546
547
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
548
549
550
551
552

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
553
        if data_args.max_eval_samples is not None:
554
555
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
556

557
        def preprocess_logits_for_metrics(logits, labels):
davidleonfdez's avatar
davidleonfdez committed
558
559
560
561
            if isinstance(logits, tuple):
                # Depending on the model and config, logits may contain extra tensors,
                # like past_key_values, but logits always come first
                logits = logits[0]
562
563
            return logits.argmax(dim=-1)

564
        metric = evaluate.load("accuracy")
565
566
567
568
569
570
571
572
573
574
575
576

        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            # preds have the same shape as the labels, after the argmax(-1) has been calculated
            # by preprocess_logits_for_metrics
            labels = labels.reshape(-1)
            preds = preds.reshape(-1)
            mask = labels != -100
            labels = labels[mask]
            preds = preds[mask]
            return metric.compute(predictions=preds, references=labels)

577
578
    # Data collator
    # This one will take care of randomly masking the tokens.
579
580
581
582
583
584
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )
585
586
587
588
589

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
590
591
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
592
593
        tokenizer=tokenizer,
        data_collator=data_collator,
594
595
596
597
        compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval and not is_torch_tpu_available()
        else None,
598
599
600
601
    )

    # Training
    if training_args.do_train:
602
603
604
605
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
606
607
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
608
        trainer.save_model()  # Saves the tokenizer too for easy upload
609
        metrics = train_result.metrics
610

611
612
613
614
615
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

616
617
618
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
619

620
621
622
623
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

624
        metrics = trainer.evaluate()
625

626
627
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
628
629
630
631
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
632
        metrics["perplexity"] = perplexity
633

634
635
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
636

637
638
639
640
641
642
643
644
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
645

646
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
647
        trainer.push_to_hub(**kwargs)
648
649
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
650

651
652
653
654
655
656
657
658

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()