"vscode:/vscode.git/clone" did not exist on "53487cf67feba6a20b17d4224e3fd6c17a16e8ef"
test_trainer.py 155 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from itertools import product
28
from pathlib import Path
29
from typing import Dict, List
30
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
import numpy as np
33
from huggingface_hub import HfFolder, ModelCard, delete_repo, list_repo_commits, list_repo_files
34
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36

37
38
39
40
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
41
    TrainerCallback,
42
    TrainingArguments,
43
    get_polynomial_decay_schedule_with_warmup,
44
45
46
    is_torch_available,
    logging,
)
47
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
48
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
49
    ENDPOINT_STAGING,
50
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
51
    USER,
52
    CaptureLogger,
53
    LoggingLevel,
54
    TestCasePlus,
55
    backend_device_count,
56
    execute_subprocess_async,
57
    get_gpu_count,
58
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
60
    require_accelerate,
61
    require_bitsandbytes,
62
    require_deepspeed,
63
    require_galore_torch,
64
    require_intel_extension_for_pytorch,
65
    require_optuna,
66
    require_peft,
67
    require_ray,
68
    require_safetensors,
69
    require_sentencepiece,
70
    require_sigopt,
71
    require_tensorboard,
72
73
    require_tokenizers,
    require_torch,
74
75
    require_torch_accelerator,
    require_torch_bf16,
76
    require_torch_gpu,
77
78
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
79
    require_torch_non_multi_gpu,
80
    require_torch_tensorrt_fx,
81
    require_torch_tf32,
82
    require_torch_up_to_2_accelerators,
83
    require_torchdynamo,
84
    require_wandb,
85
    slow,
86
    torch_device,
87
)
88
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, check_target_module_exists
89
from transformers.training_args import OptimizerNames
90
from transformers.utils import (
91
92
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
93
94
95
96
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_apex_available,
    is_bitsandbytes_available,
97
    is_safetensors_available,
98
99
    is_torchdistx_available,
)
100
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
101
102
103
104


if is_torch_available():
    import torch
105
    from torch import nn
106
107
    from torch.utils.data import IterableDataset

108
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
109
    from transformers import (
110
        AutoModelForCausalLM,
Julien Chaumond's avatar
Julien Chaumond committed
111
        AutoModelForSequenceClassification,
112
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
113
114
        GlueDataset,
        GlueDataTrainingArguments,
115
116
        GPT2Config,
        GPT2LMHeadModel,
117
        LineByLineTextDataset,
118
119
        LlamaConfig,
        LlamaForCausalLM,
120
        PreTrainedModel,
121
        Trainer,
122
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
123
    )
124
    from transformers.modeling_utils import unwrap_model
125
    from transformers.trainer_pt_utils import AcceleratorConfig
Julien Chaumond's avatar
Julien Chaumond committed
126

127
128
129
    if is_safetensors_available():
        import safetensors.torch

Julien Chaumond's avatar
Julien Chaumond committed
130

131
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
132
133


Sylvain Gugger's avatar
Sylvain Gugger committed
134
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
135
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
136
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
137
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
142

Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Converting Bytes to Megabytes
def bytes2megabytes(x):
    return int(x / 2**20)


# Copied from acclerate: https://github.com/huggingface/accelerate/blob/ee163b66fb7848892519e804688cb4ae981aacbe/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py#L40C1-L73C68
class TorchTracemalloc:
    def __enter__(self):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()  # reset the peak gauge to zero
            self.begin = torch.cuda.memory_allocated()
        return self

    def __exit__(self, *exc):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            self.end = torch.cuda.memory_allocated()
            self.peak = torch.cuda.max_memory_allocated()
        self.used = bytes2megabytes(self.end - self.begin)
        self.peaked = bytes2megabytes(self.peak - self.begin)


177
178
179
180
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
181
    keep_report_to: bool = False
182

183
    def __post_init__(self):
184
        super().__post_init__()
185
186
187
188
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
189

190

191
192
193
194
195
196
197
198
199
200
201
202
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


203
204
205
206
207
208
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
209
210
        self.xs = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
211
212
213
214
215
216
217
218

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
222
223
224
225
226
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
227

Julien Chaumond's avatar
Julien Chaumond committed
228

229
class RegressionModelConfig(PretrainedConfig):
230
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
231
232
233
234
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
235
        self.random_torch = random_torch
236
        self.hidden_size = 1
237
238


239
240
241
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
242
243
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
244
245

        def __iter__(self):
246
247
            for i in range(len(self.dataset)):
                yield self.dataset[i]
248

249
250
251
252
253
254
255
256
257
258
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

279
    class RegressionModel(nn.Module):
280
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
281
            super().__init__()
282
283
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
284
285
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
286

Stas Bekman's avatar
Stas Bekman committed
287
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
288
289
            y = input_x * self.a + self.b
            if labels is None:
290
                return (y, y) if self.double_output else (y,)
291
            loss = nn.functional.mse_loss(y, labels)
292
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
293

294
    class RegressionDictModel(nn.Module):
295
296
        def __init__(self, a=0, b=0):
            super().__init__()
297
298
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
299
300
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
301
        def forward(self, input_x, labels=None, **kwargs):
302
303
304
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
305
                result["loss"] = nn.functional.mse_loss(y, labels)
306
307
            return result

308
309
310
311
312
313
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
314
315
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
316
317
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
318
        def forward(self, input_x, labels=None, **kwargs):
319
320
321
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
322
            loss = nn.functional.mse_loss(y, labels)
323
324
            return (loss, y, y) if self.double_output else (loss, y)

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

357
358
359
360
361
362
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
363
364
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
365
            self.random_torch = config.random_torch
366
367
368

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
369
370
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
371
372
373
            np_rand = np.random.rand()
            rand_rand = random.random()

374
375
376
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
377
378
379

            if labels is None:
                return (y,)
380
            loss = nn.functional.mse_loss(y, labels)
381
382
            return (loss, y)

383
    class TstLayer(nn.Module):
384
385
        def __init__(self, hidden_size):
            super().__init__()
386
387
388
389
390
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
391
392

        def forward(self, x):
393
394
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
395
396
            return self.ln2(x + h + self.bias)

397
398
399
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
400
        label_names = kwargs.get("label_names", None)
401
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
404
405
406
407

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
408
        else:
409
410
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
411
412
413
414
415
416
417
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
418
419
420
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
421
422
423
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
424
        output_dir = kwargs.pop("output_dir", "./regression")
425
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
426

427
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
428
429
430
431
432
433
434
435
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
436
            model_init=model_init,
437
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
        )

440

441
class TrainerIntegrationCommon:
442
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
443
444
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
445
446
447
448
449
450
451
452
453
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
454
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
455
456
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
457
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
458
459
460
461
462
463
464
465
466
467

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
468
469
470
471
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
472
            best_model.load_state_dict(state_dict)
473
            best_model.to(trainer.args.device)
474
475
476
477
478
479
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

480
481
482
483
484
485
486
487
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
488
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
489
        for log, log1 in zip(log_history, log_history1):
490
491
492
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
493
494
            self.assertEqual(log, log1)

495
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
496
        # Converts a checkpoint of a regression model to a sharded checkpoint.
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
518
519
520
        keys = list(state_dict.keys())

        shard_files = [
521
522
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
523
524
525
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

526
        with open(index_file, "w", encoding="utf-8") as f:
527
528
529
530
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
531
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
532

533
534
535
536

@require_torch
@require_sentencepiece
@require_tokenizers
537
538
539
540
541
542
543
544
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

545
546
    def setUp(self):
        super().setUp()
547
        args = TrainingArguments("..")
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
580
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)).astype(np.float32)
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
617
        trainer.args.seed = 314
618
619
620
621
622
623
624
625
626
627
628
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

647
    def test_training_loss(self):
648
        n_gpus = max(1, backend_device_count(torch_device))
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

668
669
670
671
672
673
674
675
676
677
678
679
680
681
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
738
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
768
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
769
770
771
772
773
774
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
775
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

795
796
    @require_torch_accelerator
    @require_torch_bf16
797
798
799
800
801
802
803
804
805
806
807
808
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

809
810
811
812
813
814
815
816
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

817
818
819
820
821
822
823

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
824
        args = TrainingArguments("..")
825
826
827
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

828
829
830
831
832
833
834
835
836
837
838
839
840
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
841
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
842
843
844
845
846
847
848
849
850
851
852
853
854
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

855
856
857
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
858
        args = TrainingArguments("./regression", report_to=[])
859
860
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
861
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
862
            if key != "logging_dir":
863
                self.assertEqual(dict1[key], dict2[key])
864

Sylvain Gugger's avatar
Sylvain Gugger committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

881
    @require_torch_bf16
882
883
884
885
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
886
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
887
            train_output = trainer.train()
888
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
889
890
891

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
892
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
893
894
            )
            train_output = trainer.train()
895
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
896
897
898

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
899
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
900
901
902
903
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    @require_peft
    @require_bitsandbytes
    def test_bnb_compile(self):
        from peft import LoraConfig, get_peft_model

        # Simply tests if initializing a Trainer with a PEFT + compiled model works out of the box
        # QLoRA + torch compile is not really supported yet, but we should at least support the model
        # loading and let torch throw the
        tiny_model = AutoModelForCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-LlamaForCausalLM", load_in_4bit=True
        )

        peft_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=["q_proj", "k_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config)

        tiny_model = torch.compile(tiny_model)

        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmp_dir:
            args = TrainingArguments(
                tmp_dir,
                learning_rate=1e-9,
                logging_steps=5,
            )
            with self.assertRaises(ValueError):
                _ = Trainer(tiny_model, args, train_dataset=train_dataset)  # noqa

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    @require_bitsandbytes
    def test_rmsprop_bnb(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_8bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_8bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_32bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)
        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_32bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

1034
    def test_logging_inf_nan_filter(self):
1035
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
1059
    def test_train_and_eval_dataloaders(self):
1060
1061
1062
1063
        if torch_device == "cuda":
            n_gpu = max(1, backend_device_count(torch_device))
        else:
            n_gpu = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
1064
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
1065
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1066
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
1067
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1068
1069
1070
1071
1072

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
1073
1074
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
1075
1076
1077
1078
1079
1080
1081
1082
1083

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
1084
1085
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1086

1087
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
1088
        new_eval_dataset = RegressionDataset(length=128)
1089
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
    def test_galore_matched_modules(self):
        regex_patterns = [r".*.attn.*", r".*.mlp.*"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(regex_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        exact_patterns = ["q_proj", "up_proj"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(exact_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        simple_regex = r".*.attn.*"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        simple_regex = "model.transformer.h.0.attn.q_proj"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        target_modules = ["attn", "mlp"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(target_modules, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

    @require_galore_torch
    @require_torch_gpu
    def test_galore(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_extra_args(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_args="rank=64, update_proj_gap=100, scale=0.10",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise_with_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                lr_scheduler_type="cosine",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adamw_8bit(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_8bit",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)

        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_attention_only(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=["q_proj", "k_proj", "v_proj"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_all_linear(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules="all-linear",
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

1387
    @require_torch_multi_accelerator
1388
1389
1390
1391
1392
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
1393
1394
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
1395
1396
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
1397
        self.assertEqual(trainer.args.n_gpu, 1)
1398
1399

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
1400
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
1401
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
1402
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
1403
1404
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
1405
1406
1407
1408
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1409
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1420
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1421
1422
1423
1424
1425
1426
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1484
    @require_torch_bf16
1485
1486
1487
1488
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1489
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1508
                use_cpu=True,
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1527
                use_cpu=True,
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1550
1551
1552
1553
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1554
        self.assertEqual(len(preds), 2)
1555
1556
1557
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1558
1559
1560
1561
1562
1563
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1598
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1599
1600
1601
1602
1603
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1604
    @require_torch_bf16
1605
1606
1607
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
1608
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1609
1610
1611
1612
1613
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
1614
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1615
1616
1617
1618
1619
1620
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
1621
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
1637
                use_cpu=True,
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1685
    def test_log_level(self):
1686
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1687
1688
1689
        logger = logging.get_logger()
        log_info_string = "Running training"

1690
1691
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
1692
1693
1694
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1695
1696
1697
1698
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
1699

1700
1701
1702
1703
1704
1705
        with LoggingLevel(logging.INFO):
            # test with low log_level - lower than info
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="debug")
                trainer.train()
            self.assertIn(log_info_string, cl.out)
1706

1707
1708
1709
1710
1711
1712
        with LoggingLevel(logging.INFO):
            # test with high log_level - should be quiet
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="error")
                trainer.train()
            self.assertNotIn(log_info_string, cl.out)
1713

1714
1715
1716
1717
1718
1719
1720
1721
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1722
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1723
1724
1725
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

1746
    @require_torch_multi_accelerator
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1759
    @require_torch_up_to_2_accelerators
1760
    def test_can_resume_training(self):
1761
1762
1763
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1764

1765
        with tempfile.TemporaryDirectory() as tmpdir:
1766
1767
1768
1769
1770
1771
1772
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1773
            trainer = get_regression_trainer(**kwargs)
1774
1775
1776
1777
1778
1779
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1780
            # Reinitialize trainer
1781
            trainer = get_regression_trainer(**kwargs)
1782

1783
            trainer.train(resume_from_checkpoint=checkpoint)
1784
1785
1786
1787
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1788
            self.check_trainer_state_are_the_same(state, state1)
1789

1790
1791
1792
1793
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1794
            trainer = get_regression_trainer(**kwargs)
1795

1796
            trainer.train(resume_from_checkpoint=checkpoint)
1797
1798
1799
1800
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1801
            self.check_trainer_state_are_the_same(state, state1)
1802

1803
1804
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1805
1806
1807
1808
1809
1810
1811
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1812
1813

            trainer = get_regression_trainer(**kwargs)
1814
1815
1816
1817
1818
1819
1820
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1821
            trainer = get_regression_trainer(**kwargs)
1822

1823
            trainer.train(resume_from_checkpoint=checkpoint)
1824
1825
1826
1827
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1828
            self.check_trainer_state_are_the_same(state, state1)
1829

1830
1831
1832
1833
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1834
            trainer = get_regression_trainer(**kwargs)
1835

1836
            trainer.train(resume_from_checkpoint=checkpoint)
1837
1838
1839
1840
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1841
            self.check_trainer_state_are_the_same(state, state1)
1842

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1858
1859
1860
    @unittest.skip(
        reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`."
    )
1861
    def test_resume_training_with_randomness(self):
1862
1863
1864
1865
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1866
1867
1868
1869
1870
1871

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1872
1873
1874
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1875

1876
1877
1878
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1879

1880
1881
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1882

1883
1884
1885
1886
1887
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1888
1889
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1912

1913
1914
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1915

1916
    @slow
Yih-Dar's avatar
Yih-Dar committed
1917
    @require_accelerate
1918
    @require_torch_non_multi_accelerator
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
1932
                --model_name_or_path distilbert/distilbert-base-uncased
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
    @require_deepspeed
    def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
                if state.train_batch_size >= 16:
                    raise RuntimeError("CUDA out of memory.")

        deepspeed = {
            "zero_optimization": {
                "stage": 1,
            },
            "train_batch_size": "auto",
            "train_micro_batch_size_per_gpu": "auto",
        }

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
            deepspeed=deepspeed,
        )
1983
1984
1985
1986
        # Note: This can have issues, for now we don't support this functionality
        # ref: https://github.com/huggingface/transformers/pull/29057
        with self.assertRaises(NotImplementedError):
            _ = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
1987

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
    def test_auto_batch_size_with_resume_from_checkpoint(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
1999
                if state.train_batch_size >= 16:
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
                    raise RuntimeError("CUDA out of memory.")

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
        trainer.train()
        # After `auto_find_batch_size` is ran we should now be at 8
        self.assertEqual(trainer._train_batch_size, 8)

        # We can then make a new Trainer
        trainer = Trainer(model, args, train_dataset=train_dataset)
        # Check we are at 16 to start
2018
        self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1))
2019
2020
2021
2022
        trainer.train(resume_from_checkpoint=True)
        # We should be back to 8 again, picking up based upon the last ran Trainer
        self.assertEqual(trainer._train_batch_size, 8)

2023
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
2024
    def test_training_with_resume_from_checkpoint_false(self):
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

2037
    @require_torch_up_to_2_accelerators
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2062
    @require_safetensors
2063
    @require_torch_up_to_2_accelerators
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

2098
    @require_torch_up_to_2_accelerators
2099
    def test_resume_training_with_gradient_accumulation(self):
2100
2101
2102
2103
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

2119
2120
2121
2122
2123
2124
2125
2126
2127
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
2128

2129
            trainer.train(resume_from_checkpoint=checkpoint)
2130
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2131
2132
2133
2134
2135
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2136
    @require_torch_up_to_2_accelerators
2137
    def test_resume_training_with_frozen_params(self):
2138
2139
2140
2141
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2171
2172
2173
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2174
            self.check_trainer_state_are_the_same(state, state1)
2175

2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
2186
                save_steps=5,
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
2202
                save_steps=5,
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
2219
                save_strategy="epoch",
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
2238
                save_steps=5,
2239
                load_best_model_at_end=True,
2240
                pretrained=False,
2241
2242
2243
2244
2245
2246
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
                    evaluation_strategy="steps",
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

2271
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2272
    def test_trainer_eval_mrpc(self):
2273
        MODEL_ID = "google-bert/bert-base-cased-finetuned-mrpc"
Julien Chaumond's avatar
Julien Chaumond committed
2274
2275
2276
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
2277
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
2278
        )
2279
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
2280

2281
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True)
Julien Chaumond's avatar
Julien Chaumond committed
2282
2283
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
2284
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
2285

2286
2287
    @slow
    def test_trainer_eval_multiple(self):
2288
        MODEL_ID = "openai-community/gpt2"
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in dataset.examples:
            example["labels"] = example["input_ids"]
        training_args = TrainingArguments(
            output_dir="./examples",
            use_cpu=True,
            per_device_eval_batch_size=1,
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            eval_dataset={
                "data1": dataset,
                "data2": dataset,
            },
        )
        result = trainer.evaluate()
        self.assertIn("eval_data1_loss", result)
        self.assertIn("eval_data2_loss", result)

2315
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2316
    def test_trainer_eval_lm(self):
2317
        MODEL_ID = "distilbert/distilroberta-base"
Julien Chaumond's avatar
Julien Chaumond committed
2318
2319
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
2320
2321
2322
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
2323
2324
        )
        self.assertEqual(len(dataset), 31)
2325

2326
    def test_training_iterable_dataset(self):
2327
2328
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
2329
2330
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2331

2332
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
2333
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
2334
        trainer.train()
2335
        self.assertEqual(trainer.state.global_step, 4)
2336

2337
2338
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
2339
2340
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

2341
2342
2343
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
2344
2345
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2346
2347
2348
2349

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
2350

2351
2352
2353
2354
2355
2356
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
2357

2358
2359
2360
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
2361

2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
2382
2383
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
2384
2385
2386
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2402

2403
2404
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
2405
2406
2407
2408
2409
2410
2411
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
2412
                evaluation_strategy=IntervalStrategy.EPOCH,
2413
                save_strategy=IntervalStrategy.EPOCH,
2414
2415
2416
2417
2418
2419
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
2420
2421

        # Invalid inputs to trainer with early stopping callback result in assertion error
2422
2423
2424
2425
2426
2427
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
2428
                evaluation_strategy=IntervalStrategy.EPOCH,
2429
2430
2431
2432
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
2433
            self.assertEqual(trainer.state.global_step, 0)
2434
2435
2436
2437
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
2438

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2439
2440
2441
2442
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
2443
2444
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2445
2446
2447
2448
2449

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
2450
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
2451

2452
2453
2454
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
2471
2472
2473
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
2474
2475
2476
2477
2478
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
2479
2480
2481
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
2482
2483
2484
2485
2486
2487
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
    def test_compare_trainer_and_checkpoint_args_logging(self):
        logger = logging.get_logger()

        with tempfile.TemporaryDirectory() as tmpdir, CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                eval_steps=5,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            checkpoint_trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=256,
                eval_steps=10,
                gradient_accumulation_steps=4,
                per_device_train_batch_size=8,
                save_steps=10,
                learning_rate=0.1,
            )
            checkpoint_trainer.train(resume_from_checkpoint=checkpoint)

        self.assertIn(
            "Warning: The training argument 'save_steps' value (10) does not match the trainer state 'save_steps' value (5). This argument will be overridden by the one found in trainer_state.json within the checkpoint directory.",
            cl.out,
        )
        self.assertIn(
            "Warning: The training argument 'per_device_train_batch_size' value (8) does not match the trainer state 'train_batch_size' value (4). This argument will be overridden by the one found in trainer_state.json within the checkpoint directory.",
            cl.out,
        )
        self.assertIn(
            "Warning: The training argument 'eval_steps' value (10) does not match the trainer state 'eval_steps' value (5). This argument will be overridden by the one found in trainer_state.json within the checkpoint directory.",
            cl.out,
        )

2528
2529
2530
2531
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
2532
        if backend_device_count(torch_device) > 0:
2533
2534
2535
2536
2537
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
2538
        if backend_device_count(torch_device) > 0:
2539
2540
2541
2542
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
2543
        if backend_device_count(torch_device) > 0:
2544
2545
2546
2547
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
2548
        trainer = get_regression_trainer(skip_memory_metrics=False)
2549
2550
2551
2552
2553
2554
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

2555
    @require_torch_accelerator
2556
2557
2558
2559
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2560
        n_gpus = backend_device_count(torch_device)
2561
2562

        bs = 8
2563
        eval_len = 16 * n_gpus
2564
2565
2566
2567
2568
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2569
        # 1. with fp16_full_eval disabled
2570
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2590
        # 2. with fp16_full_eval enabled
2591
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

2612
2613
    @require_torch_non_multi_gpu
    @require_torchdynamo
2614
    @require_torch_tensorrt_fx
2615
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
2616
2617
        import torchdynamo

2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
2639
        torchdynamo.reset()
2640
2641
2642
2643
2644

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2645
        torchdynamo.reset()
2646

2647
2648
2649
2650
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2651
        torchdynamo.reset()
2652

2653
    @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
2654
2655
2656
2657
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
2658
2659
        import torchdynamo

2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
2676
                    x = torch.cos(x)
2677
2678
2679
2680
                return x

        mod = MyModule()

2681
        # 1. without TorchDynamo (eager baseline)
2682
2683
2684
2685
2686
2687
2688
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

2689
2690
2691
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2692
        torch.cuda.reset_peak_memory_stats()
2693

2694
2695
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2696
        torchdynamo.reset()
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

2708
2709
2710
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2711
        torch.cuda.reset_peak_memory_stats()
2712

2713
2714
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2715
        torchdynamo.reset()
2716
2717
2718
2719
2720
2721
2722
2723
2724
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

2725
2726
    @require_torch_accelerator
    @require_torch_bf16
2727
2728
2729
2730
2731
2732
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2733
        n_gpus = backend_device_count(torch_device)
2734
2735
2736
2737
2738
2739
2740
2741

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2742
        # 1. with bf16_full_eval disabled
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2763
        # 2. with bf16_full_eval enabled
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

2785
    def test_no_wd_param_group(self):
2786
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
2787
2788
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
2789
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
2790
2791
2792
2793
2794
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

2795
    @slow
2796
    @require_torch_multi_accelerator
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
2811
                "google-t5/t5-small",
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
    def test_accelerator_config_empty(self):
        # Checks that a config can be made with the defaults if not passed
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_yaml(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            path_file = Path(tmp_dir) / "accelerator_config.json"
            with open(path_file, "w") as f:
                accelerator_config = {
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": False,
                }
                json.dump(accelerator_config, f)
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=path_file)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

    def test_accelerator_config_from_dataclass(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        accelerator_config = AcceleratorConfig(
            split_batches=True, dispatch_batches=True, even_batches=False, use_seedable_sampler=False
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

    def test_accelerator_config_from_partial(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict_with_deprecated_args(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        # and maintains the deprecated args if passed in
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "split_batches": True,
                    },
                    dispatch_batches=False,
                )
                self.assertIn("dispatch_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.dispatch_batches, False)
            self.assertEqual(trainer.accelerator.split_batches, True)
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "even_batches": False,
                    },
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)

2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
    def test_accelerator_config_only_deprecated_args(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
                config = RegressionModelConfig(a=1.5, b=2.5)
                model = RegressionPreTrainedModel(config)
                eval_dataset = SampleIterableDataset()
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
                self.assertEqual(trainer.accelerator.split_batches, True)

2994

Sylvain Gugger's avatar
Sylvain Gugger committed
2995
2996
2997
2998
2999
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3000
3001
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3002
3003
3004

    @classmethod
    def tearDownClass(cls):
3005
3006
3007
3008
3009
3010
3011
        for model in [
            "test-trainer",
            "test-trainer-epoch",
            "test-trainer-step",
            "test-trainer-tensorboard",
            "test-trainer-tags",
        ]:
3012
            try:
3013
                delete_repo(token=cls._token, repo_id=model)
3014
3015
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
3016
3017

        try:
3018
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3019
3020
3021
3022
3023
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
3024
3025
3026
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
3027
                hub_token=self._token,
3028
3029
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3030
3031
3032
3033
3034
3035

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

3036
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3037
3038
3039
3040
3041
3042
3043
3044
3045

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
3046
3047
3048
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
3049
3050
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
3051
            )
3052
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3053
3054
3055
3056
3057

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
3058
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3059

3060
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3061
3062
3063
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
3082
3083
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3084
3085
3086
3087
                save_strategy="epoch",
            )
            trainer.train()

3088
3089
3090
3091
3092
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
3093
3094

    def test_push_to_hub_with_saves_each_n_steps(self):
3095
        num_gpus = max(1, backend_device_count(torch_device))
3096
3097
3098
        if num_gpus > 2:
            return

3099
3100
3101
3102
3103
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
3104
3105
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3106
3107
3108
3109
3110
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

3111
3112
3113
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
3114

3115
3116
3117
3118
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
3119

3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
    def test_push_to_hub_tags(self):
        # Checks if `trainer.push_to_hub()` works correctly by adding the desired
        # tag without having to pass `tags` in `push_to_hub`
        # see:
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tags"),
                push_to_hub=True,
                hub_token=self._token,
            )

            trainer.model.add_model_tags(["test-trainer-tags"])

            url = trainer.push_to_hub()

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

            self.assertEqual(repo_name, f"{USER}/test-trainer-tags")

            model_card = ModelCard.load(repo_name)
            self.assertTrue("test-trainer-tags" in model_card.data.tags)

Sylvain Gugger's avatar
Sylvain Gugger committed
3167

3168
3169
@require_torch
@require_optuna
3170
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
3171
    def setUp(self):
3172
        args = TrainingArguments("..")
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

3197
3198
3199
3200
3201
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3202
                evaluation_strategy=IntervalStrategy.EPOCH,
3203
                save_strategy=IntervalStrategy.EPOCH,
3204
3205
3206
3207
3208
3209
3210
3211
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
3212
3213


3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


3270
3271
3272
3273
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
3274
        args = TrainingArguments("..")
3275
3276
3277
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

3278
    def ray_hyperparameter_search(self):
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
3291
3292
3293
3294
3295
3296
3297
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3309
                evaluation_strategy=IntervalStrategy.EPOCH,
3310
                save_strategy=IntervalStrategy.EPOCH,
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
3332
3333


3334
@slow
3335
3336
3337
3338
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
3339
        args = TrainingArguments("..")
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

3394
3395
3396
3397
3398
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

3399
3400
3401
3402
3403
3404
3405
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

3406
3407
    optim_test_params = [
        (
3408
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
3409
3410
3411
3412
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3413
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
3414
3415
3416
3417
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3418
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
3419
3420
3421
3422
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
3423
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
3424
3425
3426
3427
3428
3429
3430
3431
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
3432

3433
3434
3435
3436
3437
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
3438
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3439
3440
3441
3442
3443
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

3444
3445
3446
3447
3448
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
3449
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3450
                bnb.optim.AdamW,
3451
3452
3453
3454
                default_adam_kwargs,
            )
        )

3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

3514
3515
3516

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
3517
3518
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
3519
3520
3521
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

3522
        for p, v in expected_kwargs.items():
3523
3524
3525
3526
3527
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
3528
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
3529
        # exercises all the valid --optim options
3530
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
3531

3532
        trainer = get_regression_trainer(**training_args.to_dict())
3533
3534
3535
3536
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
3537
3538
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
3539
3540
3541
3542
3543
3544
3545
3546
3547
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3548
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3549
                mock.optimizers.FusedAdam,
3550
                default_adam_kwargs,
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
3561

3562
3563
3564
3565
3566
3567
3568
3569
3570
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
3571
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
3572
3573
3574
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3575
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3576
                mock.optim.AdamW,
3577
                default_adam_kwargs,
3578
3579
            )

3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

3678
3679
3680
3681
3682
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
3683
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
3684
3685
3686
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3750
3751
3752
3753
3754

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
3755
        args = TrainingArguments("..")
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
3804
3805
3806
3807
3808
3809
3810
3811


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )