test_trainer.py 162 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from functools import partial
28
from itertools import product
29
from pathlib import Path
30
from typing import Dict, List
31
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
import numpy as np
34
from huggingface_hub import HfFolder, ModelCard, delete_repo, list_repo_commits, list_repo_files
35
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from requests.exceptions import HTTPError
37

38
39
40
41
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
42
    TrainerCallback,
43
    TrainingArguments,
44
    get_polynomial_decay_schedule_with_warmup,
45
46
47
    is_torch_available,
    logging,
)
48
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
49
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    ENDPOINT_STAGING,
51
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
    USER,
53
    CaptureLogger,
54
    LoggingLevel,
55
    TestCasePlus,
56
    backend_device_count,
57
    execute_subprocess_async,
58
    get_gpu_count,
59
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
61
    require_accelerate,
62
    require_bitsandbytes,
63
    require_deepspeed,
64
    require_galore_torch,
65
    require_intel_extension_for_pytorch,
66
    require_optuna,
67
    require_peft,
68
    require_ray,
69
    require_safetensors,
70
    require_sentencepiece,
71
    require_sigopt,
72
    require_tensorboard,
73
74
    require_tokenizers,
    require_torch,
75
76
    require_torch_accelerator,
    require_torch_bf16,
77
    require_torch_gpu,
78
79
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
80
    require_torch_non_multi_gpu,
81
    require_torch_tensorrt_fx,
82
    require_torch_tf32,
83
    require_torch_up_to_2_accelerators,
84
    require_torchdynamo,
85
    require_wandb,
86
    slow,
87
    torch_device,
88
)
89
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, check_target_module_exists
90
from transformers.training_args import OptimizerNames
91
from transformers.utils import (
92
93
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
94
95
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
96
    is_accelerate_available,
97
98
    is_apex_available,
    is_bitsandbytes_available,
99
    is_safetensors_available,
100
101
    is_torchdistx_available,
)
102
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
103
104
105
106


if is_torch_available():
    import torch
107
    from torch import nn
108
109
    from torch.utils.data import IterableDataset

110
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
111
    from transformers import (
112
        AutoModelForCausalLM,
Julien Chaumond's avatar
Julien Chaumond committed
113
        AutoModelForSequenceClassification,
114
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
115
116
        GlueDataset,
        GlueDataTrainingArguments,
117
118
        GPT2Config,
        GPT2LMHeadModel,
119
        LineByLineTextDataset,
120
121
        LlamaConfig,
        LlamaForCausalLM,
122
        PreTrainedModel,
123
        Trainer,
124
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
125
    )
126
    from transformers.trainer_pt_utils import AcceleratorConfig
Julien Chaumond's avatar
Julien Chaumond committed
127

128
129
130
    if is_safetensors_available():
        import safetensors.torch

131
132
133
# for version specific tests in TrainerIntegrationTest
require_accelerate_version_min_0_28 = partial(require_accelerate, min_version="0.28")
GRAD_ACCUM_KWARGS_VERSION_AVAILABLE = is_accelerate_available("0.28")
Julien Chaumond's avatar
Julien Chaumond committed
134

135
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
136
137


Sylvain Gugger's avatar
Sylvain Gugger committed
138
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
139
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
146

Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Converting Bytes to Megabytes
def bytes2megabytes(x):
    return int(x / 2**20)


# Copied from acclerate: https://github.com/huggingface/accelerate/blob/ee163b66fb7848892519e804688cb4ae981aacbe/src/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py#L40C1-L73C68
class TorchTracemalloc:
    def __enter__(self):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()  # reset the peak gauge to zero
            self.begin = torch.cuda.memory_allocated()
        return self

    def __exit__(self, *exc):
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            self.end = torch.cuda.memory_allocated()
            self.peak = torch.cuda.max_memory_allocated()
        self.used = bytes2megabytes(self.end - self.begin)
        self.peaked = bytes2megabytes(self.peak - self.begin)


181
182
183
184
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
185
    keep_report_to: bool = False
186

187
    def __post_init__(self):
188
        super().__post_init__()
189
190
191
192
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
193

194

195
196
197
198
199
200
201
202
203
204
205
206
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


207
208
209
210
211
212
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
213
214
        self.xs = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
215
216
217
218
219
220
221
222

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
226
227
228
229
230
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
231

Julien Chaumond's avatar
Julien Chaumond committed
232

233
class RegressionModelConfig(PretrainedConfig):
234
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
235
236
237
238
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
239
        self.random_torch = random_torch
240
        self.hidden_size = 1
241
242


243
244
245
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
246
247
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
248
249

        def __iter__(self):
250
251
            for i in range(len(self.dataset)):
                yield self.dataset[i]
252

253
254
255
256
257
258
259
260
261
262
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

283
    class RegressionModel(nn.Module):
284
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
285
            super().__init__()
286
287
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
288
289
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
290

Stas Bekman's avatar
Stas Bekman committed
291
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
292
293
            y = input_x * self.a + self.b
            if labels is None:
294
                return (y, y) if self.double_output else (y,)
295
            loss = nn.functional.mse_loss(y, labels)
296
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
297

298
    class RegressionDictModel(nn.Module):
299
300
        def __init__(self, a=0, b=0):
            super().__init__()
301
302
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
303
304
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
305
        def forward(self, input_x, labels=None, **kwargs):
306
307
308
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
309
                result["loss"] = nn.functional.mse_loss(y, labels)
310
311
            return result

312
313
314
315
316
317
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
318
319
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
320
321
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
322
        def forward(self, input_x, labels=None, **kwargs):
323
324
325
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
326
            loss = nn.functional.mse_loss(y, labels)
327
328
            return (loss, y, y) if self.double_output else (loss, y)

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

361
362
363
364
365
366
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
367
368
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
369
            self.random_torch = config.random_torch
370
371
372

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
373
374
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
375
376
377
            np_rand = np.random.rand()
            rand_rand = random.random()

378
379
380
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
381
382
383

            if labels is None:
                return (y,)
384
            loss = nn.functional.mse_loss(y, labels)
385
386
            return (loss, y)

387
    class TstLayer(nn.Module):
388
389
        def __init__(self, hidden_size):
            super().__init__()
390
391
392
393
394
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
395
396

        def forward(self, x):
397
398
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
399
400
            return self.ln2(x + h + self.bias)

401
402
403
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
404
        label_names = kwargs.get("label_names", None)
405
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
408
409
410
411

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
412
        else:
413
414
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
415
416
417
418
419
420
421
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
422
423
424
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
425
426
427
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
428
        output_dir = kwargs.pop("output_dir", "./regression")
429
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
430

431
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
432
433
434
435
436
437
438
439
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
440
            model_init=model_init,
441
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
442
443
        )

444

445
class TrainerIntegrationCommon:
446
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
447
448
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
449
450
451
452
453
454
455
456
457
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
458
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
459
460
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
461
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
462
463
464
465
466
467
468
469
470
471

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
472
473
474
475
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
476
            best_model.load_state_dict(state_dict)
477
            best_model.to(trainer.args.device)
478
479
480
481
482
483
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

484
485
486
487
488
489
490
491
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
492
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
493
        for log, log1 in zip(log_history, log_history1):
494
495
496
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
497
498
            self.assertEqual(log, log1)

499
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
500
        # Converts a checkpoint of a regression model to a sharded checkpoint.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
522
523
524
        keys = list(state_dict.keys())

        shard_files = [
525
526
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
527
528
529
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

530
        with open(index_file, "w", encoding="utf-8") as f:
531
532
533
534
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
535
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
536

537
538
539
540

@require_torch
@require_sentencepiece
@require_tokenizers
541
542
543
544
545
546
547
548
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

549
550
    def setUp(self):
        super().setUp()
551
        args = TrainingArguments("..")
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
584
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)).astype(np.float32)
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
621
        trainer.args.seed = 314
622
623
624
625
626
627
628
629
630
631
632
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

651
    def test_training_loss(self):
652
        n_gpus = max(1, backend_device_count(torch_device))
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    def test_cosine_with_min_lr_scheduler(self):
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"min_lr": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="cosine_with_min_lr",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Check the last learning rate
        for _ in range(num_steps):
            trainer.lr_scheduler.step()
        self.assertEqual(trainer.lr_scheduler.get_last_lr()[0], 1e-5)

736
737
738
739
740
741
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
742
            eval_strategy="epoch",
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            metric_for_best_model="eval_loss",
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
765
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
766
767
768
769
770
771
772
773
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
774
            eval_strategy="epoch",
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
795
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
796
797
798
799
800
801
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
802
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
803

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

822
823
    @require_torch_accelerator
    @require_torch_bf16
824
825
826
827
828
829
830
831
832
833
834
835
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

836
837
838
839
840
841
842
843
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

844
845
846
847
848
849
850

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
851
        args = TrainingArguments("..")
852
853
854
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

855
856
857
858
859
860
861
862
863
864
865
866
867
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
868
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
869
870
871
872
873
874
875
876
877
878
879
880
881
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

882
883
884
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
885
        args = TrainingArguments("./regression", report_to=[])
886
887
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
888
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
889
            if key != "logging_dir":
890
                self.assertEqual(dict1[key], dict2[key])
891

Sylvain Gugger's avatar
Sylvain Gugger committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

908
    @require_torch_bf16
909
910
911
912
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
913
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
914
            train_output = trainer.train()
915
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
916
917
918

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
919
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
920
921
            )
            train_output = trainer.train()
922
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
923
924
925

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
926
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
927
928
929
930
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    @require_peft
    @require_bitsandbytes
    def test_bnb_compile(self):
        from peft import LoraConfig, get_peft_model

        # Simply tests if initializing a Trainer with a PEFT + compiled model works out of the box
        # QLoRA + torch compile is not really supported yet, but we should at least support the model
        # loading and let torch throw the
        tiny_model = AutoModelForCausalLM.from_pretrained(
            "hf-internal-testing/tiny-random-LlamaForCausalLM", load_in_4bit=True
        )

        peft_config = LoraConfig(
            r=8,
            lora_alpha=32,
            target_modules=["q_proj", "k_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )
        tiny_model = get_peft_model(tiny_model, peft_config)

        tiny_model = torch.compile(tiny_model)

        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmp_dir:
            args = TrainingArguments(
                tmp_dir,
                learning_rate=1e-9,
                logging_steps=5,
            )
            with self.assertRaises(ValueError):
                _ = Trainer(tiny_model, args, train_dataset=train_dataset)  # noqa

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    @require_bitsandbytes
    def test_rmsprop_bnb(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_8bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_8bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_32bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)
        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_32bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

1061
    def test_logging_inf_nan_filter(self):
1062
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
1086
    def test_train_and_eval_dataloaders(self):
1087
1088
1089
1090
        if torch_device == "cuda":
            n_gpu = max(1, backend_device_count(torch_device))
        else:
            n_gpu = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
1091
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
1092
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1093
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
1094
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1095
1096
1097
1098
1099

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
1100
1101
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
1102
1103
1104
1105
1106
1107
1108
1109
1110

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
1111
1112
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1113

1114
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
1115
        new_eval_dataset = RegressionDataset(length=128)
1116
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
    def test_galore_matched_modules(self):
        regex_patterns = [r".*.attn.*", r".*.mlp.*"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(regex_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        exact_patterns = ["q_proj", "up_proj"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(exact_patterns, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        simple_regex = r".*.attn.*"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertTrue(is_regex)

        simple_regex = "model.transformer.h.0.attn.q_proj"

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, False]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(simple_regex, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

        target_modules = ["attn", "mlp"]

        module_names = [
            "model.transformer.h.0.ln_1",
            "model.transformer.h.0.attn.q_proj",
            "model.lm_head",
            "model.transformer.h.0.mlp.up_proj",
        ]
        expected_values = [False, True, False, True]

        for expected_value, module_name in zip(expected_values, module_names):
            is_module_matched, is_regex = check_target_module_exists(target_modules, module_name, return_is_regex=True)
            self.assertTrue(is_module_matched == expected_value)
            if is_module_matched:
                self.assertFalse(is_regex)

    @require_galore_torch
    @require_torch_gpu
    def test_galore(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_extra_args(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw",
                optim_args="rank=64, update_proj_gap=100, scale=0.10",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_layerwise_with_scheduler(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_layerwise",
                lr_scheduler_type="cosine",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adamw_8bit(self):
        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adamw_8bit",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=[r".*attn.*", r".*mlp.*"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)

        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_attention_only(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules=["q_proj", "k_proj", "v_proj"],
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

    @require_galore_torch
    @require_torch_gpu
    def test_galore_adafactor_all_linear(self):
        # These are the intervals of the peak memory usage of training such a tiny model
        # if the peak memory goes outside that range, then we know there might be a bug somewhere
        upper_bound_pm = 700
        lower_bound_pm = 650

        config = LlamaConfig(vocab_size=100, hidden_size=32, num_hidden_layers=3, num_attention_heads=4)
        tiny_llama = LlamaForCausalLM(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir, TorchTracemalloc() as tracemalloc:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir,
                learning_rate=1e-9,
                logging_steps=5,
                optim="galore_adafactor",
                optim_target_modules="all-linear",
            )
            trainer = Trainer(tiny_llama, args, train_dataset=train_dataset)

            # Check this works
            _ = trainer.train()

        galore_peak_memory = tracemalloc.peaked + bytes2megabytes(tracemalloc.begin)
        self.assertTrue(galore_peak_memory < upper_bound_pm)
        self.assertTrue(lower_bound_pm < galore_peak_memory)

1414
    @require_torch_multi_accelerator
1415
1416
1417
1418
1419
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
1420
1421
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
1422
1423
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
1424
        self.assertEqual(trainer.args.n_gpu, 1)
1425
1426

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
1427
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
1428
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
1429
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
1430
1431
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
1432
1433
1434
1435
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1436
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1447
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1448
1449
1450
1451
1452
1453
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1511
    @require_torch_bf16
1512
1513
1514
1515
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1516
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1535
                use_cpu=True,
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1554
                use_cpu=True,
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1577
1578
1579
1580
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1581
        self.assertEqual(len(preds), 2)
1582
1583
1584
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1585
1586
1587
1588
1589
1590
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1625
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1626
1627
1628
1629
1630
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1631
    @require_torch_bf16
1632
1633
1634
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
1635
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1636
1637
1638
1639
1640
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
1641
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1642
1643
1644
1645
1646
1647
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
1648
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
1664
                use_cpu=True,
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1712
    def test_log_level(self):
1713
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1714
1715
1716
        logger = logging.get_logger()
        log_info_string = "Running training"

1717
1718
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
1719
1720
1721
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1722
1723
1724
1725
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
1726

1727
1728
1729
1730
1731
1732
        with LoggingLevel(logging.INFO):
            # test with low log_level - lower than info
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="debug")
                trainer.train()
            self.assertIn(log_info_string, cl.out)
1733

1734
1735
1736
1737
1738
1739
        with LoggingLevel(logging.INFO):
            # test with high log_level - should be quiet
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="error")
                trainer.train()
            self.assertNotIn(log_info_string, cl.out)
1740

1741
1742
1743
1744
1745
1746
1747
1748
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1749
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1750
1751
1752
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

1773
    @require_torch_multi_accelerator
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1786
    @require_torch_up_to_2_accelerators
1787
    def test_can_resume_training(self):
1788
1789
1790
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1791

1792
        with tempfile.TemporaryDirectory() as tmpdir:
1793
1794
1795
1796
1797
1798
1799
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1800
            trainer = get_regression_trainer(**kwargs)
1801
1802
1803
1804
1805
1806
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1807
            # Reinitialize trainer
1808
            trainer = get_regression_trainer(**kwargs)
1809

1810
            trainer.train(resume_from_checkpoint=checkpoint)
1811
1812
1813
1814
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1815
            self.check_trainer_state_are_the_same(state, state1)
1816

1817
1818
1819
1820
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1821
            trainer = get_regression_trainer(**kwargs)
1822

1823
            trainer.train(resume_from_checkpoint=checkpoint)
1824
1825
1826
1827
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1828
            self.check_trainer_state_are_the_same(state, state1)
1829

1830
1831
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1832
1833
1834
1835
1836
1837
1838
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1839
1840

            trainer = get_regression_trainer(**kwargs)
1841
1842
1843
1844
1845
1846
1847
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1848
            trainer = get_regression_trainer(**kwargs)
1849

1850
            trainer.train(resume_from_checkpoint=checkpoint)
1851
1852
1853
1854
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1855
            self.check_trainer_state_are_the_same(state, state1)
1856

1857
1858
1859
1860
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1861
            trainer = get_regression_trainer(**kwargs)
1862

1863
            trainer.train(resume_from_checkpoint=checkpoint)
1864
1865
1866
1867
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1868
            self.check_trainer_state_are_the_same(state, state1)
1869

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1885
1886
1887
    @unittest.skip(
        reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`."
    )
1888
    def test_resume_training_with_randomness(self):
1889
1890
1891
1892
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1893
1894
1895
1896
1897
1898

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1899
1900
1901
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1902

1903
1904
1905
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1906

1907
1908
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1909

1910
1911
1912
1913
1914
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1915
1916
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1939

1940
1941
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1942

1943
    @slow
Yih-Dar's avatar
Yih-Dar committed
1944
    @require_accelerate
1945
    @require_torch_non_multi_accelerator
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
1959
                --model_name_or_path distilbert/distilbert-base-uncased
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
    @require_deepspeed
    def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
                if state.train_batch_size >= 16:
                    raise RuntimeError("CUDA out of memory.")

        deepspeed = {
            "zero_optimization": {
                "stage": 1,
            },
            "train_batch_size": "auto",
            "train_micro_batch_size_per_gpu": "auto",
        }

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
            deepspeed=deepspeed,
        )
2010
2011
2012
2013
        # Note: This can have issues, for now we don't support this functionality
        # ref: https://github.com/huggingface/transformers/pull/29057
        with self.assertRaises(NotImplementedError):
            _ = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
2014

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
    def test_auto_batch_size_with_resume_from_checkpoint(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
2026
                if state.train_batch_size >= 16:
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
                    raise RuntimeError("CUDA out of memory.")

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
        trainer.train()
        # After `auto_find_batch_size` is ran we should now be at 8
        self.assertEqual(trainer._train_batch_size, 8)

        # We can then make a new Trainer
        trainer = Trainer(model, args, train_dataset=train_dataset)
        # Check we are at 16 to start
2045
        self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1))
2046
2047
2048
2049
        trainer.train(resume_from_checkpoint=True)
        # We should be back to 8 again, picking up based upon the last ran Trainer
        self.assertEqual(trainer._train_batch_size, 8)

2050
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
2051
    def test_training_with_resume_from_checkpoint_false(self):
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

2064
    @require_torch_up_to_2_accelerators
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2089
    @require_safetensors
2090
    @require_torch_up_to_2_accelerators
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

2125
    @require_torch_up_to_2_accelerators
2126
    def test_resume_training_with_gradient_accumulation(self):
2127
2128
2129
2130
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

2146
2147
2148
2149
2150
2151
2152
2153
2154
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
2155

2156
            trainer.train(resume_from_checkpoint=checkpoint)
2157
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2158
2159
2160
2161
2162
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

2163
    @require_torch_up_to_2_accelerators
2164
    def test_resume_training_with_frozen_params(self):
2165
2166
2167
2168
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
2198
2199
2200
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
2201
            self.check_trainer_state_are_the_same(state, state1)
2202

2203
2204
2205
2206
2207
2208
2209
2210
2211
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2212
                eval_strategy="steps",
2213
                save_steps=5,
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2228
                eval_strategy="steps",
2229
                save_steps=5,
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
2245
                eval_strategy="epoch",
2246
                save_strategy="epoch",
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
2264
                eval_strategy="steps",
2265
                save_steps=5,
2266
                load_best_model_at_end=True,
2267
                pretrained=False,
2268
2269
2270
2271
2272
2273
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
2285
                    eval_strategy="steps",
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

2298
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2299
    def test_trainer_eval_mrpc(self):
2300
        MODEL_ID = "google-bert/bert-base-cased-finetuned-mrpc"
Julien Chaumond's avatar
Julien Chaumond committed
2301
2302
2303
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
2304
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
2305
        )
2306
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
2307

2308
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True)
Julien Chaumond's avatar
Julien Chaumond committed
2309
2310
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
2311
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
2312

2313
2314
    @slow
    def test_trainer_eval_multiple(self):
2315
        MODEL_ID = "openai-community/gpt2"
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in dataset.examples:
            example["labels"] = example["input_ids"]
        training_args = TrainingArguments(
            output_dir="./examples",
            use_cpu=True,
            per_device_eval_batch_size=1,
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            eval_dataset={
                "data1": dataset,
                "data2": dataset,
            },
        )
        result = trainer.evaluate()
        self.assertIn("eval_data1_loss", result)
        self.assertIn("eval_data2_loss", result)

2342
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
2343
    def test_trainer_eval_lm(self):
2344
        MODEL_ID = "distilbert/distilroberta-base"
Julien Chaumond's avatar
Julien Chaumond committed
2345
2346
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
2347
2348
2349
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
2350
2351
        )
        self.assertEqual(len(dataset), 31)
2352

2353
    def test_training_iterable_dataset(self):
2354
2355
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
2356
2357
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2358

2359
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
2360
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
2361
        trainer.train()
2362
        self.assertEqual(trainer.state.global_step, 4)
2363

2364
2365
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
2366
2367
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

2368
2369
2370
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
2371
2372
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2373
2374
2375
2376

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
2377

2378
2379
2380
2381
2382
2383
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
2384

2385
2386
2387
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
2388

2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
2409
2410
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
2411
2412
2413
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2429

2430
2431
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
2432
2433
2434
2435
2436
2437
2438
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
2439
                eval_strategy=IntervalStrategy.EPOCH,
2440
                save_strategy=IntervalStrategy.EPOCH,
2441
2442
2443
2444
2445
2446
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
2447
2448

        # Invalid inputs to trainer with early stopping callback result in assertion error
2449
2450
2451
2452
2453
2454
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
2455
                eval_strategy=IntervalStrategy.EPOCH,
2456
2457
2458
2459
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
2460
            self.assertEqual(trainer.state.global_step, 0)
2461
2462
2463
2464
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
2465

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2466
2467
2468
2469
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
2470
2471
2472
2473
            self.assertEqual(trainer.model, trainer.accelerator.unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(
                getattr(trainer.accelerator.unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0
            )
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2474
2475
2476
2477
2478

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
2479
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
2480

2481
2482
2483
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
2500
            trainer = get_regression_trainer(
2501
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=2
2502
            )
2503
2504
2505
2506
2507
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
2508
            trainer = get_regression_trainer(
2509
                output_dir=tmp_dir, eval_strategy="steps", load_best_model_at_end=True, save_total_limit=1
2510
            )
2511
2512
2513
2514
2515
2516
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
    def test_compare_trainer_and_checkpoint_args_logging(self):
        logger = logging.get_logger()

        with tempfile.TemporaryDirectory() as tmpdir, CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                eval_steps=5,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            checkpoint_trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=256,
                eval_steps=10,
                gradient_accumulation_steps=4,
                per_device_train_batch_size=8,
                save_steps=10,
                learning_rate=0.1,
            )
            checkpoint_trainer.train(resume_from_checkpoint=checkpoint)

2544
2545
        self.assertIn("save_steps: 10 (from args) != 5 (from trainer_state.json)", cl.out)

2546
        self.assertIn(
2547
            "per_device_train_batch_size: 8 (from args) != 4 (from trainer_state.json)",
2548
2549
2550
            cl.out,
        )
        self.assertIn(
2551
            "eval_steps: 10 (from args) != 5 (from trainer_state.json)",
2552
2553
2554
            cl.out,
        )

2555
2556
2557
2558
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
2559
        if backend_device_count(torch_device) > 0:
2560
2561
2562
2563
2564
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
2565
        if backend_device_count(torch_device) > 0:
2566
2567
2568
2569
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
2570
        if backend_device_count(torch_device) > 0:
2571
2572
2573
2574
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
2575
        trainer = get_regression_trainer(skip_memory_metrics=False)
2576
2577
2578
2579
2580
2581
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

2582
    @require_torch_accelerator
2583
2584
2585
2586
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2587
        n_gpus = backend_device_count(torch_device)
2588
2589

        bs = 8
2590
        eval_len = 16 * n_gpus
2591
2592
2593
2594
2595
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2596
        # 1. with fp16_full_eval disabled
2597
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2617
        # 2. with fp16_full_eval enabled
2618
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

2639
2640
    @require_torch_non_multi_gpu
    @require_torchdynamo
2641
    @require_torch_tensorrt_fx
2642
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
2643
2644
        import torchdynamo

2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
2666
        torchdynamo.reset()
2667
2668
2669
2670
2671

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2672
        torchdynamo.reset()
2673

2674
2675
2676
2677
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2678
        torchdynamo.reset()
2679

2680
    @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
2681
2682
2683
2684
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
2685
2686
        import torchdynamo

2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
2703
                    x = torch.cos(x)
2704
2705
2706
2707
                return x

        mod = MyModule()

2708
        # 1. without TorchDynamo (eager baseline)
2709
2710
2711
2712
2713
2714
2715
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

2716
2717
2718
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2719
        torch.cuda.reset_peak_memory_stats()
2720

2721
2722
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2723
        torchdynamo.reset()
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

2735
2736
2737
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2738
        torch.cuda.reset_peak_memory_stats()
2739

2740
2741
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2742
        torchdynamo.reset()
2743
2744
2745
2746
2747
2748
2749
2750
2751
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

2752
2753
    @require_torch_accelerator
    @require_torch_bf16
2754
2755
2756
2757
2758
2759
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2760
        n_gpus = backend_device_count(torch_device)
2761
2762
2763
2764
2765
2766
2767
2768

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2769
        # 1. with bf16_full_eval disabled
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2790
        # 2. with bf16_full_eval enabled
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

2812
    def test_no_wd_param_group(self):
2813
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
2814
2815
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
2816
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
2817
2818
2819
2820
2821
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

2822
    @slow
2823
    @require_torch_multi_accelerator
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
2838
                "google-t5/t5-small",
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
    def test_accelerator_config_empty(self):
        # Checks that a config can be made with the defaults if not passed
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

2884
2885
2886
2887
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                # gradient accumulation kwargs configures gradient_state
                self.assertNotIn("sync_each_batch", trainer.accelerator.gradient_state.plugin_kwargs)

2888
2889
2890
2891
2892
2893
2894
2895
    def test_accelerator_config_from_dict(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

2896
2897
2898
2899
2900
2901
2902
2903
2904
            accelerator_config = {
                "split_batches": True,
                "dispatch_batches": True,
                "even_batches": False,
                "use_seedable_sampler": True,
            }
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}

2905
2906
2907
            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
2908
                accelerator_config=accelerator_config,
2909
2910
2911
2912
2913
2914
2915
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

2916
2917
2918
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
    def test_accelerator_config_from_yaml(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            path_file = Path(tmp_dir) / "accelerator_config.json"
            with open(path_file, "w") as f:
                accelerator_config = {
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": False,
                }
2931
2932
                if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                    accelerator_config["gradient_accumulation_kwargs"] = {"sync_each_batch": True}
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
                json.dump(accelerator_config, f)
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=path_file)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

2946
2947
2948
            if GRAD_ACCUM_KWARGS_VERSION_AVAILABLE:
                self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

2949
2950
2951
    def test_accelerator_config_from_dataclass(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
2952

2953
        accelerator_config = AcceleratorConfig(
2954
2955
2956
2957
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
    @require_accelerate_version_min_0_28
    def test_accelerate_config_from_dataclass_grad_accum(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively

        grad_acc_kwargs = {
            "num_steps": 10,
            "adjust_scheduler": False,
            "sync_with_dataloader": False,
            "sync_each_batch": True,
        }
        accelerator_config = AcceleratorConfig(
            split_batches=True,
            dispatch_batches=True,
            even_batches=False,
            use_seedable_sampler=False,
            gradient_accumulation_kwargs=grad_acc_kwargs,
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 10)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["adjust_scheduler"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_with_dataloader"], False)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["sync_each_batch"], True)

2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
    def test_accelerator_config_from_partial(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict_with_deprecated_args(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        # and maintains the deprecated args if passed in
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "split_batches": True,
                    },
                    dispatch_batches=False,
                )
                self.assertIn("dispatch_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.dispatch_batches, False)
            self.assertEqual(trainer.accelerator.split_batches, True)
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "even_batches": False,
                    },
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)

3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
    def test_accelerator_config_only_deprecated_args(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
                config = RegressionModelConfig(a=1.5, b=2.5)
                model = RegressionPreTrainedModel(config)
                eval_dataset = SampleIterableDataset()
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
                self.assertEqual(trainer.accelerator.split_batches, True)

3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
    @require_accelerate_version_min_0_28
    def test_accelerator_config_from_dict_grad_accum_num_steps(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # case - TrainingArguments.gradient_accumulation_steps == 1
            #      - gradient_accumulation_kwargs['num_steps] == 1
            # results in grad accum set to 1
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=1,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 1,
                    }
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.gradient_state.plugin_kwargs["num_steps"], 1)

            # case - TrainingArguments.gradient_accumulation_steps > 1
            #      - gradient_accumulation_kwargs['num_steps] specified
            # results in exception raised
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                gradient_accumulation_steps=2,
                accelerator_config={
                    "gradient_accumulation_kwargs": {
                        "num_steps": 10,
                    }
                },
            )
            with self.assertRaises(Exception) as context:
                trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertTrue("The `AcceleratorConfig`'s `num_steps` is set but" in str(context.exception))

3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
    def test_accelerator_config_not_instantiated(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config=AcceleratorConfig,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

        # Now test with a custom subclass
        @dataclasses.dataclass
        class CustomAcceleratorConfig(AcceleratorConfig):
            pass

        @dataclasses.dataclass
        class CustomTrainingArguments(TrainingArguments):
            accelerator_config: dict = dataclasses.field(
                default=CustomAcceleratorConfig,
            )

        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(NotImplementedError) as context:
                _ = CustomTrainingArguments(
                    output_dir=tmp_dir,
                )
            self.assertTrue("Tried passing in a callable to `accelerator_config`" in str(context.exception))

3137

Sylvain Gugger's avatar
Sylvain Gugger committed
3138
3139
3140
3141
3142
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3143
3144
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3145
3146
3147

    @classmethod
    def tearDownClass(cls):
3148
3149
3150
3151
3152
3153
3154
        for model in [
            "test-trainer",
            "test-trainer-epoch",
            "test-trainer-step",
            "test-trainer-tensorboard",
            "test-trainer-tags",
        ]:
3155
            try:
3156
                delete_repo(token=cls._token, repo_id=model)
3157
3158
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
3159
3160

        try:
3161
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3162
3163
3164
3165
3166
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
3167
3168
3169
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
3170
                hub_token=self._token,
3171
3172
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3173
3174
3175
3176
3177
3178

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

3179
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3180
3181
3182
3183
3184
3185
3186
3187
3188

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
3189
3190
3191
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
3192
3193
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
3194
            )
3195
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
3196
3197
3198
3199
3200

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
3201
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3202

3203
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3204
3205
3206
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
3225
3226
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3227
3228
3229
3230
                save_strategy="epoch",
            )
            trainer.train()

3231
3232
3233
3234
3235
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
3236
3237

    def test_push_to_hub_with_saves_each_n_steps(self):
3238
        num_gpus = max(1, backend_device_count(torch_device))
3239
3240
3241
        if num_gpus > 2:
            return

3242
3243
3244
3245
3246
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
3247
3248
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
3249
3250
3251
3252
3253
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

3254
3255
3256
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
3257

3258
3259
3260
3261
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
3262

3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
    def test_push_to_hub_tags(self):
        # Checks if `trainer.push_to_hub()` works correctly by adding the desired
        # tag without having to pass `tags` in `push_to_hub`
        # see:
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tags"),
                push_to_hub=True,
                hub_token=self._token,
            )

            trainer.model.add_model_tags(["test-trainer-tags"])

            url = trainer.push_to_hub()

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

            self.assertEqual(repo_name, f"{USER}/test-trainer-tags")

            model_card = ModelCard.load(repo_name)
            self.assertTrue("test-trainer-tags" in model_card.data.tags)

Sylvain Gugger's avatar
Sylvain Gugger committed
3310

3311
3312
@require_torch
@require_optuna
3313
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
3314
    def setUp(self):
3315
        args = TrainingArguments("..")
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

3340
3341
3342
3343
3344
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3345
                eval_strategy=IntervalStrategy.EPOCH,
3346
                save_strategy=IntervalStrategy.EPOCH,
3347
3348
3349
3350
3351
3352
3353
3354
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
3355
3356


3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3394
                eval_strategy=IntervalStrategy.EPOCH,
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


3413
3414
3415
3416
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
3417
        args = TrainingArguments("..")
3418
3419
3420
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

3421
    def ray_hyperparameter_search(self):
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
3434
3435
3436
3437
3438
3439
3440
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3452
                eval_strategy=IntervalStrategy.EPOCH,
3453
                save_strategy=IntervalStrategy.EPOCH,
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
3475
3476


3477
@slow
3478
3479
3480
3481
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
3482
        args = TrainingArguments("..")
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3515
                eval_strategy=IntervalStrategy.EPOCH,
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

3537
3538
3539
3540
3541
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

3542
3543
3544
3545
3546
3547
3548
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

3549
3550
    optim_test_params = [
        (
3551
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
3552
3553
3554
3555
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3556
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
3557
3558
3559
3560
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3561
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
3562
3563
3564
3565
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
3566
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
3567
3568
3569
3570
3571
3572
3573
3574
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
3575

3576
3577
3578
3579
3580
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
3581
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3582
3583
3584
3585
3586
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

3587
3588
3589
3590
3591
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
3592
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3593
                bnb.optim.AdamW,
3594
3595
3596
3597
                default_adam_kwargs,
            )
        )

3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

3657
3658
3659

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
3660
3661
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
3662
3663
3664
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

3665
        for p, v in expected_kwargs.items():
3666
3667
3668
3669
3670
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
3671
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
3672
        # exercises all the valid --optim options
3673
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
3674

3675
        trainer = get_regression_trainer(**training_args.to_dict())
3676
3677
3678
3679
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
3680
3681
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
3682
3683
3684
3685
3686
3687
3688
3689
3690
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3691
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3692
                mock.optimizers.FusedAdam,
3693
                default_adam_kwargs,
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
3704

3705
3706
3707
3708
3709
3710
3711
3712
3713
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
3714
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
3715
3716
3717
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3718
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3719
                mock.optim.AdamW,
3720
                default_adam_kwargs,
3721
3722
            )

3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

3821
3822
3823
3824
3825
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
3826
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
3827
3828
3829
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3893
3894
3895
3896
3897

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
3898
        args = TrainingArguments("..")
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
3935
                eval_strategy=IntervalStrategy.EPOCH,
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
3947
3948
3949
3950
3951
3952
3953
3954


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992


@require_torch
class OptimizerAndModelInspectionTest(unittest.TestCase):
    def test_get_num_trainable_parameters(self):
        model = nn.Sequential(nn.Linear(128, 64), nn.Linear(64, 32))
        # in_features * out_features + bias
        layer_1 = 128 * 64 + 64
        layer_2 = 64 * 32 + 32
        trainer = Trainer(model=model)
        self.assertEqual(trainer.get_num_trainable_parameters(), layer_1 + layer_2)
        # Freeze the last layer
        for param in model[-1].parameters():
            param.requires_grad = False
        self.assertEqual(trainer.get_num_trainable_parameters(), layer_1)

    def test_get_learning_rates(self):
        model = nn.Sequential(nn.Linear(128, 64))
        trainer = Trainer(model=model)
        with self.assertRaises(ValueError):
            trainer.get_learning_rates()
        trainer.create_optimizer()
        self.assertEqual(trainer.get_learning_rates(), [5e-05, 5e-05])

    def test_get_optimizer_group(self):
        model = nn.Sequential(nn.Linear(128, 64))
        trainer = Trainer(model=model)
        # ValueError is raised if optimizer is None
        with self.assertRaises(ValueError):
            trainer.get_optimizer_group()
        trainer.create_optimizer()
        # Get groups
        num_groups = len(trainer.get_optimizer_group())
        self.assertEqual(num_groups, 2)
        # Get group of parameter
        param = next(model.parameters())
        group = trainer.get_optimizer_group(param)
        self.assertIn(param, group["params"])