"examples/pytorch/summarization/README.md" did not exist on "783d7d2629e97c5f0c5f9ef01b8c66410275c204"
perf_infer_gpu_one.md 26.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
11
12
13

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

14
15
-->

16
# GPU inference
17

18
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 馃 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs.
19
20
21

<Tip>

22
The majority of the optimizations described here also apply to multi-GPU setups!
23
24
25

</Tip>

26
## FlashAttention-2
27

28
<Tip>
29

30
FlashAttention-2 is experimental and may change considerably in future versions.
31

32
</Tip>
33

34
[FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by:
35

36
37
1. additionally parallelizing the attention computation over sequence length
2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them
38

39
40
41
FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
42
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
43
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
44
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
45
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
46
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
47
48
49
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
50
* [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel)
amyeroberts's avatar
amyeroberts committed
51
* [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model)
52
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
Yikang Shen's avatar
Yikang Shen committed
53
* [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel)
tomeras91's avatar
tomeras91 committed
54
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
55
56
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
NielsRogge's avatar
NielsRogge committed
57
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
58
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
Raushan Turganbay's avatar
Raushan Turganbay committed
59
* [VideoLlava](https://huggingface.co/docs/transformers/model_doc/video_llava)
60
* [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)
61
62
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
63
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
64
65
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
66
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
Shane A's avatar
Shane A committed
67
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
68
69
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
Gustavo de Rosa's avatar
Gustavo de Rosa committed
70
* [Phi3](https://huggingface.co/docs/transformers/model_doc/phi3#transformers.Phi3Model)
Jonathan Tow's avatar
Jonathan Tow committed
71
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
72
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
73
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
74
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
75
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
76
77
78
79
80
81
* [Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model)
* [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel)
* [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel)
* [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel)
* [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel)
* [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel)
82
83

You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request.
84

Steven Liu's avatar
Steven Liu committed
85
Before you begin, make sure you have FlashAttention-2 installed.
86

Steven Liu's avatar
Steven Liu committed
87
88
89
90
91
92
93
94
95
96
97
98
<hfoptions id="install">
<hfoption id="NVIDIA">

```bash
pip install flash-attn --no-build-isolation
```

We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types!

</hfoption>
<hfoption id="AMD">

99
FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210**, **Instinct MI250** and **Instinct MI300**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs.
Steven Liu's avatar
Steven Liu committed
100
101
102

</hfoption>
</hfoptions>
103

104
To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]:
105
106
107
108
109
110
111
112
113

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
114
115
    model_id,
    torch_dtype=torch.bfloat16,
116
    attn_implementation="flash_attention_2",
117
118
119
)
```

120
<Tip>
121

122
FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2.
123

Steven Liu's avatar
Steven Liu committed
124
125
126
<br>

You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`.
amyeroberts's avatar
amyeroberts committed
127

128
</Tip>
129

130
FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization:
131

132
```py
133
134
135
136
137
138
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

139
# load in 8bit
140
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
141
    model_id,
142
    load_in_8bit=True,
143
    attn_implementation="flash_attention_2",
144
145
)

146
# load in 4bit
147
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
148
    model_id,
149
    load_in_4bit=True,
150
    attn_implementation="flash_attention_2",
151
152
153
)
```

154
### Expected speedups
155

156
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens.
157

158
To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length).
159

160
For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
161

162
163
164
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
165

166
For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
167

168
169
170
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
171

172
For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens):
173

174
175
176
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
177

178
But for larger sequence lengths, you can expect even more speedup benefits:
179
180
181

<Tip>

182
FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details.
183

184
</Tip>
Younes Belkada's avatar
Younes Belkada committed
185

186
187
188
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
189

Steven Liu's avatar
Steven Liu committed
190
## PyTorch scaled dot product attention
191

192
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available. You may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
193

Steven Liu's avatar
Steven Liu committed
194
For now, Transformers supports SDPA inference and training for the following architectures:
195
* [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTModel)
196
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
197
* [Bert](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel)
Saurabh Dash's avatar
Saurabh Dash committed
198
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
199
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
200
* [DeiT](https://huggingface.co/docs/transformers/model_doc/deit#transformers.DeiTModel)
201
* [Dpr](https://huggingface.co/docs/transformers/model_doc/dpr#transformers.DprReader)
202
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
203
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
204
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
Abhi Venigalla's avatar
Abhi Venigalla committed
205
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
206
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
Yikang Shen's avatar
Yikang Shen committed
207
* [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel)
tomeras91's avatar
tomeras91 committed
208
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
209
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
Shane A's avatar
Shane A committed
210
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
Pablo Montalvo's avatar
Pablo Montalvo committed
211
* [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration)
JB (Don)'s avatar
JB (Don) committed
212
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
213
214
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
215
216
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
217
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
218
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
219
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
220
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
221
222
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
223
224
225
226
227
* [ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.ViTModel)
* [ViTHybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid#transformers.ViTHybridModel)
* [ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae#transformers.ViTMAEModel)
* [ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn#transformers.ViTMSNModel)
* [VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae#transformers.VideoMAEModell)
228
229
230
231
232
233
* [wav2vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model)
* [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel)
* [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel)
* [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel)
* [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel)
* [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel)
234
* [YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos#transformers.YolosModel)
235

236

Steven Liu's avatar
Steven Liu committed
237
238
<Tip>

239
FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. The memory-efficient attention backend is able to handle `fp32` models.
240

Steven Liu's avatar
Steven Liu committed
241
242
</Tip>

243
244
245
246
247
248
249
<Tip>

SDPA does not support certain sets of attention parameters, such as `head_mask` and `output_attentions=True`.
In that case, you should see a warning message and we will fall back to the (slower) eager implementation.

</Tip>

Steven Liu's avatar
Steven Liu committed
250
By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager:
251
252
253
254
255
256

```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
257
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
258
259
260
261
262
263
264
265
266
267

input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Steven Liu's avatar
Steven Liu committed
268
If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention:
269
270

```bash
271
RuntimeError: No available kernel. Aborting execution.
272

273
# install PyTorch nightly
274
275
276
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```

277
278
279
280
## BetterTransformer

<Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
281
Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers.
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

</Tip>

<Tip>

Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 馃 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post.

</Tip>

BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are:

1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps
2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors

BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood.

Before you start, make sure you have 馃 Optimum [installed](https://huggingface.co/docs/optimum/installation).

Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method:

```python
model = model.to_bettertransformer()
```

You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling:

```py
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

313
## bitsandbytes
314

315
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory.
316

Stas Bekman's avatar
Stas Bekman committed
317
Make sure you have bitsandbytes and 馃 Accelerate installed:
318

319
320
321
```bash
# these versions support 8-bit and 4-bit
pip install bitsandbytes>=0.39.0 accelerate>=0.20.0
322

323
324
325
# install Transformers
pip install transformers
```
326

327
### 4-bit
328

329
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment.
330
331
332
333
334

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
335
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
336
337
```

338
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU:
339
340
341
342

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
343
model_4bit = AutoModelForCausalLM.from_pretrained(
344
345
346
347
    model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```

348
### 8-bit
349

350
<Tip>
351

352
If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post.
353
354
355

</Tip>

356
To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment:
357

358
```py
359
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
360

361
model_name = "bigscience/bloom-2b5"
362
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
363
364
```

365
If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model:
366
367

```py
368
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
369
370
371

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
372
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
373

374
prompt = "Hello, my llama is cute"
375
376
377
378
379
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```

380
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU:
381
382
383
384
385
386
387
388
389

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```

390
<Tip>
391

392
Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs!
393

394
</Tip>
395

396
## 馃 Optimum
397

398
399
<Tip>

400
Learn more details about using ORT with 馃 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example.
401
402
403

</Tip>

404
ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices.
405

406
ORT is supported by 馃 Optimum which can be used in 馃 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format:
407
408
409
410
411

```py
from optimum.onnxruntime import ORTModelForSequenceClassification

ort_model = ORTModelForSequenceClassification.from_pretrained(
412
  "distilbert/distilbert-base-uncased-finetuned-sst-2-english",
413
414
415
416
  export=True,
  provider="CUDAExecutionProvider",
)
```
417

418
419
420
421
422
423
Now you're free to use the model for inference:

```py
from optimum.pipelines import pipeline
from transformers import AutoTokenizer

424
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
425
426
427
428
429
430
431
432

pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0")
result = pipeline("Both the music and visual were astounding, not to mention the actors performance.")
```

## Combine optimizations

It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention:
433
434
435
436
437

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

438
# load model in 4-bit
439
440
441
442
443
444
445
446
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)

447
448
449
# enable BetterTransformer
model = model.to_bettertransformer()

450
451
452
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

453
# enable FlashAttention
454
455
456
457
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
458
```