perf_infer_gpu_one.md 22.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
11
12
13

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

14
15
-->

16
# GPU inference
17

18
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 馃 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs.
19
20
21

<Tip>

22
The majority of the optimizations described here also apply to multi-GPU setups!
23
24
25

</Tip>

26
## FlashAttention-2
27

28
<Tip>
29

30
FlashAttention-2 is experimental and may change considerably in future versions.
31

32
</Tip>
33

34
[FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by:
35

36
37
1. additionally parallelizing the attention computation over sequence length
2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them
38

39
40
41
FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
42
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
43
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
44
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
45
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
46
47
48
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
49
* [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel)
amyeroberts's avatar
amyeroberts committed
50
* [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model)
51
52
53
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
NielsRogge's avatar
NielsRogge committed
54
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
55
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
56
* [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)
57
58
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
59
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
60
61
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
62
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
Shane A's avatar
Shane A committed
63
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
64
65
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
Jonathan Tow's avatar
Jonathan Tow committed
66
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
67
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
68
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
69
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
70
71
72
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)

You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request.
73

Steven Liu's avatar
Steven Liu committed
74
Before you begin, make sure you have FlashAttention-2 installed.
75

Steven Liu's avatar
Steven Liu committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<hfoptions id="install">
<hfoption id="NVIDIA">

```bash
pip install flash-attn --no-build-isolation
```

We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types!

</hfoption>
<hfoption id="AMD">

FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210** and **Instinct MI250**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs.

</hfoption>
</hfoptions>
92

93
To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]:
94
95
96
97
98
99
100
101
102

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
103
104
    model_id,
    torch_dtype=torch.bfloat16,
105
    attn_implementation="flash_attention_2",
106
107
108
)
```

109
<Tip>
110

111
FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2.
112

Steven Liu's avatar
Steven Liu committed
113
114
115
<br>

You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`.
amyeroberts's avatar
amyeroberts committed
116

117
</Tip>
118

119
FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization:
120

121
```py
122
123
124
125
126
127
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

128
# load in 8bit
129
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
130
    model_id,
131
    load_in_8bit=True,
132
    attn_implementation="flash_attention_2",
133
134
)

135
# load in 4bit
136
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
137
    model_id,
138
    load_in_4bit=True,
139
    attn_implementation="flash_attention_2",
140
141
142
)
```

143
### Expected speedups
144

145
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens.
146

147
To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length).
148

149
For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
150

151
152
153
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
154

155
For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
156

157
158
159
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
160

161
For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens):
162

163
164
165
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
166

167
But for larger sequence lengths, you can expect even more speedup benefits:
168
169
170

<Tip>

171
FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details.
172

173
</Tip>
Younes Belkada's avatar
Younes Belkada committed
174

175
176
177
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
178

Steven Liu's avatar
Steven Liu committed
179
## PyTorch scaled dot product attention
180

Steven Liu's avatar
Steven Liu committed
181
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available.
182

Steven Liu's avatar
Steven Liu committed
183
For now, Transformers supports SDPA inference and training for the following architectures:
184
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
185
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
186
187
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
188
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
189
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
Shane A's avatar
Shane A committed
190
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
JB (Don)'s avatar
JB (Don) committed
191
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
192
193
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
194
195
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
196
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
197
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
198
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
199
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
200
201
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
202

Steven Liu's avatar
Steven Liu committed
203
204
<Tip>

205
FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. The memory-efficient attention backend is able to handle `fp32` models.
206

Steven Liu's avatar
Steven Liu committed
207
208
209
</Tip>

By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager:
210
211
212
213
214
215

```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
216
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
217
218
219
220
221
222
223
224
225
226
227
228
# convert the model to BetterTransformer
model.to_bettertransformer()

input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Steven Liu's avatar
Steven Liu committed
229
If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention:
230
231

```bash
232
RuntimeError: No available kernel. Aborting execution.
233

234
# install PyTorch nightly
235
236
237
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```

238
239
240
241
## BetterTransformer

<Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
242
Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers.
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

</Tip>

<Tip>

Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 馃 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post.

</Tip>

BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are:

1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps
2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors

BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood.

Before you start, make sure you have 馃 Optimum [installed](https://huggingface.co/docs/optimum/installation).

Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method:

```python
model = model.to_bettertransformer()
```

You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling:

```py
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

274
## bitsandbytes
275

276
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory.
277

Stas Bekman's avatar
Stas Bekman committed
278
Make sure you have bitsandbytes and 馃 Accelerate installed:
279

280
281
282
```bash
# these versions support 8-bit and 4-bit
pip install bitsandbytes>=0.39.0 accelerate>=0.20.0
283

284
285
286
# install Transformers
pip install transformers
```
287

288
### 4-bit
289

290
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment.
291
292
293
294
295

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
296
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
297
298
```

299
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU:
300
301
302
303

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
304
model_4bit = AutoModelForCausalLM.from_pretrained(
305
306
307
308
    model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```

309
### 8-bit
310

311
<Tip>
312

313
If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post.
314
315
316

</Tip>

317
To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment:
318

319
```py
320
321
from transformers import AutoModelForCausalLM

322
323
324
325
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```

326
If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model:
327
328
329
330
331
332
333
334

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)

335
prompt = "Hello, my llama is cute"
336
337
338
339
340
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```

341
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU:
342
343
344
345
346
347
348
349
350

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```

351
<Tip>
352

353
Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs!
354

355
</Tip>
356

357
## 馃 Optimum
358

359
360
<Tip>

361
Learn more details about using ORT with 馃 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example.
362
363
364

</Tip>

365
ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices.
366

367
ORT is supported by 馃 Optimum which can be used in 馃 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format:
368
369
370
371
372

```py
from optimum.onnxruntime import ORTModelForSequenceClassification

ort_model = ORTModelForSequenceClassification.from_pretrained(
373
  "distilbert/distilbert-base-uncased-finetuned-sst-2-english",
374
375
376
377
  export=True,
  provider="CUDAExecutionProvider",
)
```
378

379
380
381
382
383
384
Now you're free to use the model for inference:

```py
from optimum.pipelines import pipeline
from transformers import AutoTokenizer

385
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
386
387
388
389
390
391
392
393

pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0")
result = pipeline("Both the music and visual were astounding, not to mention the actors performance.")
```

## Combine optimizations

It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention:
394
395
396
397
398

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

399
# load model in 4-bit
400
401
402
403
404
405
406
407
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)

408
409
410
# enable BetterTransformer
model = model.to_bettertransformer()

411
412
413
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

414
# enable FlashAttention
415
416
417
418
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
419
```