perf_infer_gpu_one.md 25.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
11
12
13

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

14
15
-->

16
# GPU inference
17

18
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 馃 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs.
19
20
21

<Tip>

22
The majority of the optimizations described here also apply to multi-GPU setups!
23
24
25

</Tip>

26
## FlashAttention-2
27

28
<Tip>
29

30
FlashAttention-2 is experimental and may change considerably in future versions.
31

32
</Tip>
33

34
[FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by:
35

36
37
1. additionally parallelizing the attention computation over sequence length
2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them
38

39
40
41
FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
42
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
43
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
44
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
45
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
46
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
47
48
49
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
50
* [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel)
amyeroberts's avatar
amyeroberts committed
51
* [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model)
52
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
Yikang Shen's avatar
Yikang Shen committed
53
* [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel)
tomeras91's avatar
tomeras91 committed
54
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
55
56
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
NielsRogge's avatar
NielsRogge committed
57
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
58
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
Raushan Turganbay's avatar
Raushan Turganbay committed
59
* [VideoLlava](https://huggingface.co/docs/transformers/model_doc/video_llava)
60
* [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)
61
62
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
63
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
64
65
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
66
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
Shane A's avatar
Shane A committed
67
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
68
69
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
Gustavo de Rosa's avatar
Gustavo de Rosa committed
70
* [Phi3](https://huggingface.co/docs/transformers/model_doc/phi3#transformers.Phi3Model)
Jonathan Tow's avatar
Jonathan Tow committed
71
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
72
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
73
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
74
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
75
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
76
77
78
79
80
81
* [Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model)
* [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel)
* [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel)
* [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel)
* [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel)
* [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel)
82
83

You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request.
84

Steven Liu's avatar
Steven Liu committed
85
Before you begin, make sure you have FlashAttention-2 installed.
86

Steven Liu's avatar
Steven Liu committed
87
88
89
90
91
92
93
94
95
96
97
98
<hfoptions id="install">
<hfoption id="NVIDIA">

```bash
pip install flash-attn --no-build-isolation
```

We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types!

</hfoption>
<hfoption id="AMD">

99
FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210**, **Instinct MI250** and **Instinct MI300**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs.
Steven Liu's avatar
Steven Liu committed
100
101
102

</hfoption>
</hfoptions>
103

104
To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]:
105
106
107
108
109
110
111
112
113

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
114
115
    model_id,
    torch_dtype=torch.bfloat16,
116
    attn_implementation="flash_attention_2",
117
118
119
)
```

120
<Tip>
121

122
FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2.
123

Steven Liu's avatar
Steven Liu committed
124
125
126
<br>

You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`.
amyeroberts's avatar
amyeroberts committed
127

128
</Tip>
129

130
FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization:
131

132
```py
133
134
135
136
137
138
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

139
# load in 8bit
140
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
141
    model_id,
142
    load_in_8bit=True,
143
    attn_implementation="flash_attention_2",
144
145
)

146
# load in 4bit
147
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
148
    model_id,
149
    load_in_4bit=True,
150
    attn_implementation="flash_attention_2",
151
152
153
)
```

154
### Expected speedups
155

156
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens.
157

158
To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length).
159

160
For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
161

162
163
164
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
165

166
For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
167

168
169
170
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
171

172
For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens):
173

174
175
176
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
177

178
But for larger sequence lengths, you can expect even more speedup benefits:
179
180
181

<Tip>

182
FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details.
183

184
</Tip>
Younes Belkada's avatar
Younes Belkada committed
185

186
187
188
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
189

Steven Liu's avatar
Steven Liu committed
190
## PyTorch scaled dot product attention
191

192
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available. You may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
193

Steven Liu's avatar
Steven Liu committed
194
For now, Transformers supports SDPA inference and training for the following architectures:
195
* [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTModel)
196
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
197
* [Bert](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel)
Saurabh Dash's avatar
Saurabh Dash committed
198
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
199
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
200
* [DeiT](https://huggingface.co/docs/transformers/model_doc/deit#transformers.DeiTModel)
201
* [Dpr](https://huggingface.co/docs/transformers/model_doc/dpr#transformers.DprReader)
202
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
203
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
204
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
Yikang Shen's avatar
Yikang Shen committed
205
* [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel)
tomeras91's avatar
tomeras91 committed
206
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
207
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
Shane A's avatar
Shane A committed
208
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
Pablo Montalvo's avatar
Pablo Montalvo committed
209
* [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration)
JB (Don)'s avatar
JB (Don) committed
210
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
211
212
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
213
214
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
215
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
216
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
217
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
218
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
219
220
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
221
222
223
224
225
* [ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.ViTModel)
* [ViTHybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid#transformers.ViTHybridModel)
* [ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae#transformers.ViTMAEModel)
* [ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn#transformers.ViTMSNModel)
* [VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae#transformers.VideoMAEModell)
226
227
228
229
230
231
* [wav2vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2Model)
* [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel)
* [data2vec_audio](https://huggingface.co/docs/transformers/main/en/model_doc/data2vec#transformers.Data2VecAudioModel)
* [Sew](https://huggingface.co/docs/transformers/main/en/model_doc/sew#transformers.SEWModel)
* [UniSpeech](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech#transformers.UniSpeechModel)
* [unispeech_sat](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/unispeech-sat#transformers.UniSpeechSatModel)
232
* [YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos#transformers.YolosModel)
233

234

Steven Liu's avatar
Steven Liu committed
235
236
<Tip>

237
FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. The memory-efficient attention backend is able to handle `fp32` models.
238

Steven Liu's avatar
Steven Liu committed
239
240
</Tip>

241
242
243
244
245
246
247
<Tip>

SDPA does not support certain sets of attention parameters, such as `head_mask` and `output_attentions=True`.
In that case, you should see a warning message and we will fall back to the (slower) eager implementation.

</Tip>

Steven Liu's avatar
Steven Liu committed
248
By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager:
249
250
251
252
253
254

```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
255
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
256
257
258
259
260
261
262
263
264
265

input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Steven Liu's avatar
Steven Liu committed
266
If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention:
267
268

```bash
269
RuntimeError: No available kernel. Aborting execution.
270

271
# install PyTorch nightly
272
273
274
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```

275
276
277
278
## BetterTransformer

<Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
279
Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers.
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

</Tip>

<Tip>

Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 馃 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post.

</Tip>

BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are:

1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps
2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors

BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood.

Before you start, make sure you have 馃 Optimum [installed](https://huggingface.co/docs/optimum/installation).

Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method:

```python
model = model.to_bettertransformer()
```

You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling:

```py
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

311
## bitsandbytes
312

313
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory.
314

Stas Bekman's avatar
Stas Bekman committed
315
Make sure you have bitsandbytes and 馃 Accelerate installed:
316

317
318
319
```bash
# these versions support 8-bit and 4-bit
pip install bitsandbytes>=0.39.0 accelerate>=0.20.0
320

321
322
323
# install Transformers
pip install transformers
```
324

325
### 4-bit
326

327
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment.
328
329
330
331
332

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
333
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
334
335
```

336
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU:
337
338
339
340

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
341
model_4bit = AutoModelForCausalLM.from_pretrained(
342
343
344
345
    model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```

346
### 8-bit
347

348
<Tip>
349

350
If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post.
351
352
353

</Tip>

354
To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment:
355

356
```py
357
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
358

359
model_name = "bigscience/bloom-2b5"
360
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
361
362
```

363
If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model:
364
365

```py
366
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
367
368
369

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
370
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
371

372
prompt = "Hello, my llama is cute"
373
374
375
376
377
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```

378
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU:
379
380
381
382
383
384
385
386
387

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```

388
<Tip>
389

390
Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs!
391

392
</Tip>
393

394
## 馃 Optimum
395

396
397
<Tip>

398
Learn more details about using ORT with 馃 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example.
399
400
401

</Tip>

402
ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices.
403

404
ORT is supported by 馃 Optimum which can be used in 馃 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format:
405
406
407
408
409

```py
from optimum.onnxruntime import ORTModelForSequenceClassification

ort_model = ORTModelForSequenceClassification.from_pretrained(
410
  "distilbert/distilbert-base-uncased-finetuned-sst-2-english",
411
412
413
414
  export=True,
  provider="CUDAExecutionProvider",
)
```
415

416
417
418
419
420
421
Now you're free to use the model for inference:

```py
from optimum.pipelines import pipeline
from transformers import AutoTokenizer

422
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
423
424
425
426
427
428
429
430

pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0")
result = pipeline("Both the music and visual were astounding, not to mention the actors performance.")
```

## Combine optimizations

It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention:
431
432
433
434
435

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

436
# load model in 4-bit
437
438
439
440
441
442
443
444
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)

445
446
447
# enable BetterTransformer
model = model.to_bettertransformer()

448
449
450
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

451
# enable FlashAttention
452
453
454
455
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
456
```