perf_infer_gpu_one.md 22.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
11
12
13

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

14
15
-->

16
# GPU inference
17

18
GPUs are the standard choice of hardware for machine learning, unlike CPUs, because they are optimized for memory bandwidth and parallelism. To keep up with the larger sizes of modern models or to run these large models on existing and older hardware, there are several optimizations you can use to speed up GPU inference. In this guide, you'll learn how to use FlashAttention-2 (a more memory-efficient attention mechanism), BetterTransformer (a PyTorch native fastpath execution), and bitsandbytes to quantize your model to a lower precision. Finally, learn how to use 馃 Optimum to accelerate inference with ONNX Runtime on Nvidia and AMD GPUs.
19
20
21

<Tip>

22
The majority of the optimizations described here also apply to multi-GPU setups!
23
24
25

</Tip>

26
## FlashAttention-2
27

28
<Tip>
29

30
FlashAttention-2 is experimental and may change considerably in future versions.
31

32
</Tip>
33

34
[FlashAttention-2](https://huggingface.co/papers/2205.14135) is a faster and more efficient implementation of the standard attention mechanism that can significantly speedup inference by:
35

36
37
1. additionally parallelizing the attention computation over sequence length
2. partitioning the work between GPU threads to reduce communication and shared memory reads/writes between them
38

39
40
41
FlashAttention-2 is currently supported for the following architectures:
* [Bark](https://huggingface.co/docs/transformers/model_doc/bark#transformers.BarkModel)
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
42
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
43
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
44
* [DistilBert](https://huggingface.co/docs/transformers/model_doc/distilbert#transformers.DistilBertModel)
45
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
46
* [GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2)
47
48
49
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
* [GPTNeo](https://huggingface.co/docs/transformers/model_doc/gpt_neo#transformers.GPTNeoModel)
* [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel)
50
* [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel)
amyeroberts's avatar
amyeroberts committed
51
* [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model)
52
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
tomeras91's avatar
tomeras91 committed
53
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
54
55
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
NielsRogge's avatar
NielsRogge committed
56
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
57
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
58
* [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)
59
60
* [MBart](https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartModel)
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
61
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
62
63
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
64
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
Shane A's avatar
Shane A committed
65
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
66
67
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
Jonathan Tow's avatar
Jonathan Tow committed
68
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
69
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
70
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
71
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
72
73
74
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)

You can request to add FlashAttention-2 support for another model by opening a GitHub Issue or Pull Request.
75

Steven Liu's avatar
Steven Liu committed
76
Before you begin, make sure you have FlashAttention-2 installed.
77

Steven Liu's avatar
Steven Liu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
<hfoptions id="install">
<hfoption id="NVIDIA">

```bash
pip install flash-attn --no-build-isolation
```

We strongly suggest referring to the detailed [installation instructions](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features) to learn more about supported hardware and data types!

</hfoption>
<hfoption id="AMD">

FlashAttention-2 is also supported on AMD GPUs and current support is limited to **Instinct MI210** and **Instinct MI250**. We strongly suggest using this [Dockerfile](https://github.com/huggingface/optimum-amd/tree/main/docker/transformers-pytorch-amd-gpu-flash/Dockerfile) to use FlashAttention-2 on AMD GPUs.

</hfoption>
</hfoptions>
94

95
To enable FlashAttention-2, pass the argument `attn_implementation="flash_attention_2"` to [`~AutoModelForCausalLM.from_pretrained`]:
96
97
98
99
100
101
102
103
104

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
105
106
    model_id,
    torch_dtype=torch.bfloat16,
107
    attn_implementation="flash_attention_2",
108
109
110
)
```

111
<Tip>
112

113
FlashAttention-2 can only be used when the model's dtype is `fp16` or `bf16`. Make sure to cast your model to the appropriate dtype and load them on a supported device before using FlashAttention-2.
114

Steven Liu's avatar
Steven Liu committed
115
116
117
<br>

You can also set `use_flash_attention_2=True` to enable FlashAttention-2 but it is deprecated in favor of `attn_implementation="flash_attention_2"`.
amyeroberts's avatar
amyeroberts committed
118

119
</Tip>
120

121
FlashAttention-2 can be combined with other optimization techniques like quantization to further speedup inference. For example, you can combine FlashAttention-2 with 8-bit or 4-bit quantization:
122

123
```py
124
125
126
127
128
129
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM

model_id = "tiiuae/falcon-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)

130
# load in 8bit
131
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
132
    model_id,
133
    load_in_8bit=True,
134
    attn_implementation="flash_attention_2",
135
136
)

137
# load in 4bit
138
model = AutoModelForCausalLM.from_pretrained(
amyeroberts's avatar
amyeroberts committed
139
    model_id,
140
    load_in_4bit=True,
141
    attn_implementation="flash_attention_2",
142
143
144
)
```

145
### Expected speedups
146

147
You can benefit from considerable speedups for inference, especially for inputs with long sequences. However, since FlashAttention-2 does not support computing attention scores with padding tokens, you must manually pad/unpad the attention scores for batched inference when the sequence contains padding tokens. This leads to a significant slowdown for batched generations with padding tokens.
148

149
To overcome this, you should use FlashAttention-2 without padding tokens in the sequence during training (by packing a dataset or [concatenating sequences](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py#L516) until reaching the maximum sequence length).
150

151
For a single forward pass on [tiiuae/falcon-7b](https://hf.co/tiiuae/falcon-7b) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
152

153
154
155
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/falcon-7b-inference-large-seqlen.png">
</div>
156

157
For a single forward pass on [meta-llama/Llama-7b-hf](https://hf.co/meta-llama/Llama-7b-hf) with a sequence length of 4096 and various batch sizes without padding tokens, the expected speedup is:
158

159
160
161
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-7b-inference-large-seqlen.png">
</div>
162

163
For sequences with padding tokens (generating with padding tokens), you need to unpad/pad the input sequences to correctly compute the attention scores. With a relatively small sequence length, a single forward pass creates overhead leading to a small speedup (in the example below, 30% of the input is filled with padding tokens):
164

165
166
167
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-small-seqlen-padding.png">
</div>
168

169
But for larger sequence lengths, you can expect even more speedup benefits:
170
171
172

<Tip>

173
FlashAttention is more memory efficient, meaning you can train on much larger sequence lengths without running into out-of-memory issues. You can potentially reduce memory usage up to 20x for larger sequence lengths. Take a look at the [flash-attention](https://github.com/Dao-AILab/flash-attention) repository for more details.
174

175
</Tip>
Younes Belkada's avatar
Younes Belkada committed
176

177
178
179
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/llama-2-large-seqlen-padding.png">
</div>
180

Steven Liu's avatar
Steven Liu committed
181
## PyTorch scaled dot product attention
182

Steven Liu's avatar
Steven Liu committed
183
PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA) can also call FlashAttention and memory-efficient attention kernels under the hood. SDPA support is currently being added natively in Transformers and is used by default for `torch>=2.1.1` when an implementation is available.
184

Steven Liu's avatar
Steven Liu committed
185
For now, Transformers supports SDPA inference and training for the following architectures:
186
* [Bart](https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartModel)
Saurabh Dash's avatar
Saurabh Dash committed
187
* [Cohere](https://huggingface.co/docs/transformers/model_doc/cohere#transformers.CohereModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
188
* [Dbrx](https://huggingface.co/docs/transformers/model_doc/dbrx#transformers.DbrxModel)
189
* [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel)
190
* [Gemma](https://huggingface.co/docs/transformers/model_doc/gemma#transformers.GemmaModel)
Abhi Venigalla's avatar
Abhi Venigalla committed
191
* [GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode#transformers.GPTBigCodeModel)
tomeras91's avatar
tomeras91 committed
192
* [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel)
193
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
Shane A's avatar
Shane A committed
194
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
JB (Don)'s avatar
JB (Don) committed
195
* [Phi](https://huggingface.co/docs/transformers/model_doc/phi#transformers.PhiModel)
196
197
* [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel)
* [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperModel)
198
199
* [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral#transformers.MistralModel)
* [Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral#transformers.MixtralModel)
200
* [StableLm](https://huggingface.co/docs/transformers/model_doc/stablelm#transformers.StableLmModel)
RaymondLi0's avatar
RaymondLi0 committed
201
* [Starcoder2](https://huggingface.co/docs/transformers/model_doc/starcoder2#transformers.Starcoder2Model)
Junyang Lin's avatar
Junyang Lin committed
202
* [Qwen2](https://huggingface.co/docs/transformers/model_doc/qwen2#transformers.Qwen2Model)
Bo Zheng's avatar
Bo Zheng committed
203
* [Qwen2MoE](https://huggingface.co/docs/transformers/model_doc/qwen2_moe#transformers.Qwen2MoeModel)
204
205
* [Musicgen](https://huggingface.co/docs/transformers/model_doc/musicgen#transformers.MusicgenModel)
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
206

Steven Liu's avatar
Steven Liu committed
207
208
<Tip>

209
FlashAttention can only be used for models with the `fp16` or `bf16` torch type, so make sure to cast your model to the appropriate type first. The memory-efficient attention backend is able to handle `fp32` models.
210

Steven Liu's avatar
Steven Liu committed
211
212
213
</Tip>

By default, SDPA selects the most performant kernel available but you can check whether a backend is available in a given setting (hardware, problem size) with [`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel) as a context manager:
214
215
216
217
218
219

```diff
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
220
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16).to("cuda")
221
222
223
224
225
226
227
228
229
230
231
232
# convert the model to BetterTransformer
model.to_bettertransformer()

input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Steven Liu's avatar
Steven Liu committed
233
If you see a bug with the traceback below, try using the nightly version of PyTorch which may have broader coverage for FlashAttention:
234
235

```bash
236
RuntimeError: No available kernel. Aborting execution.
237

238
# install PyTorch nightly
239
240
241
pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
```

242
243
244
245
## BetterTransformer

<Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
246
Some BetterTransformer features are being upstreamed to Transformers with default support for native `torch.nn.scaled_dot_product_attention`. BetterTransformer still has a wider coverage than the Transformers SDPA integration, but you can expect more and more architectures to natively support SDPA in Transformers.
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

</Tip>

<Tip>

Check out our benchmarks with BetterTransformer and scaled dot product attention in the [Out of the box acceleration and memory savings of 馃 decoder models with PyTorch 2.0](https://pytorch.org/blog/out-of-the-box-acceleration/) and learn more about the fastpath execution in the [BetterTransformer](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2) blog post.

</Tip>

BetterTransformer accelerates inference with its fastpath (native PyTorch specialized implementation of Transformer functions) execution. The two optimizations in the fastpath execution are:

1. fusion, which combines multiple sequential operations into a single "kernel" to reduce the number of computation steps
2. skipping the inherent sparsity of padding tokens to avoid unnecessary computation with nested tensors

BetterTransformer also converts all attention operations to use the more memory-efficient [scaled dot product attention (SDPA)](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention), and it calls optimized kernels like [FlashAttention](https://huggingface.co/papers/2205.14135) under the hood.

Before you start, make sure you have 馃 Optimum [installed](https://huggingface.co/docs/optimum/installation).

Then you can enable BetterTransformer with the [`PreTrainedModel.to_bettertransformer`] method:

```python
model = model.to_bettertransformer()
```

You can return the original Transformers model with the [`~PreTrainedModel.reverse_bettertransformer`] method. You should use this before saving your model to use the canonical Transformers modeling:

```py
model = model.reverse_bettertransformer()
model.save_pretrained("saved_model")
```

278
## bitsandbytes
279

280
bitsandbytes is a quantization library that includes support for 4-bit and 8-bit quantization. Quantization reduces your model size compared to its native full precision version, making it easier to fit large models onto GPUs with limited memory.
281

Stas Bekman's avatar
Stas Bekman committed
282
Make sure you have bitsandbytes and 馃 Accelerate installed:
283

284
285
286
```bash
# these versions support 8-bit and 4-bit
pip install bitsandbytes>=0.39.0 accelerate>=0.20.0
287

288
289
290
# install Transformers
pip install transformers
```
291

292
### 4-bit
293

294
To load a model in 4-bit for inference, use the `load_in_4bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment.
295
296
297
298
299

```py
from transformers import AutoModelForCausalLM

model_name = "bigscience/bloom-2b5"
300
model_4bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
301
302
```

303
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 600MB of memory to the first GPU and 1GB of memory to the second GPU:
304
305
306
307

```py
max_memory_mapping = {0: "600MB", 1: "1GB"}
model_name = "bigscience/bloom-3b"
308
model_4bit = AutoModelForCausalLM.from_pretrained(
309
310
311
312
    model_name, device_map="auto", load_in_4bit=True, max_memory=max_memory_mapping
)
```

313
### 8-bit
314

315
<Tip>
316

317
If you're curious and interested in learning more about the concepts underlying 8-bit quantization, read the [Gentle Introduction to 8-bit Matrix Multiplication for transformers at scale using Hugging Face Transformers, Accelerate and bitsandbytes](https://huggingface.co/blog/hf-bitsandbytes-integration) blog post.
318
319
320

</Tip>

321
To load a model in 8-bit for inference, use the `load_in_8bit` parameter. The `device_map` parameter is optional, but we recommend setting it to `"auto"` to allow 馃 Accelerate to automatically and efficiently allocate the model given the available resources in the environment:
322

323
```py
324
325
from transformers import AutoModelForCausalLM

326
327
328
329
model_name = "bigscience/bloom-2b5"
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
```

330
If you're loading a model in 8-bit for text generation, you should use the [`~transformers.GenerationMixin.generate`] method instead of the [`Pipeline`] function which is not optimized for 8-bit models and will be slower. Some sampling strategies, like nucleus sampling, are also not supported by the [`Pipeline`] for 8-bit models. You should also place all inputs on the same device as the model:
331
332
333
334
335
336
337
338

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "bigscience/bloom-2b5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)

339
prompt = "Hello, my llama is cute"
340
341
342
343
344
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
```

345
To load a model in 4-bit for inference with multiple GPUs, you can control how much GPU RAM you want to allocate to each GPU. For example, to distribute 1GB of memory to the first GPU and 2GB of memory to the second GPU:
346
347
348
349
350
351
352
353
354

```py
max_memory_mapping = {0: "1GB", 1: "2GB"}
model_name = "bigscience/bloom-3b"
model_8bit = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
)
```

355
<Tip>
356

357
Feel free to try running a 11 billion parameter [T5 model](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing) or the 3 billion parameter [BLOOM model](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing) for inference on Google Colab's free tier GPUs!
358

359
</Tip>
360

361
## 馃 Optimum
362

363
364
<Tip>

365
Learn more details about using ORT with 馃 Optimum in the [Accelerated inference on NVIDIA GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#accelerated-inference-on-nvidia-gpus) and [Accelerated inference on AMD GPUs](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu#accelerated-inference-on-amd-gpus) guides. This section only provides a brief and simple example.
366
367
368

</Tip>

369
ONNX Runtime (ORT) is a model accelerator that supports accelerated inference on Nvidia GPUs, and AMD GPUs that use [ROCm](https://www.amd.com/en/products/software/rocm.html) stack. ORT uses optimization techniques like fusing common operations into a single node and constant folding to reduce the number of computations performed and speedup inference. ORT also places the most computationally intensive operations on the GPU and the rest on the CPU to intelligently distribute the workload between the two devices.
370

371
ORT is supported by 馃 Optimum which can be used in 馃 Transformers. You'll need to use an [`~optimum.onnxruntime.ORTModel`] for the task you're solving, and specify the `provider` parameter which can be set to either [`CUDAExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#cudaexecutionprovider), [`ROCMExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/amdgpu) or [`TensorrtExecutionProvider`](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/gpu#tensorrtexecutionprovider). If you want to load a model that was not yet exported to ONNX, you can set `export=True` to convert your model on-the-fly to the ONNX format:
372
373
374
375
376

```py
from optimum.onnxruntime import ORTModelForSequenceClassification

ort_model = ORTModelForSequenceClassification.from_pretrained(
377
  "distilbert/distilbert-base-uncased-finetuned-sst-2-english",
378
379
380
381
  export=True,
  provider="CUDAExecutionProvider",
)
```
382

383
384
385
386
387
388
Now you're free to use the model for inference:

```py
from optimum.pipelines import pipeline
from transformers import AutoTokenizer

389
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
390
391
392
393
394
395
396
397

pipeline = pipeline(task="text-classification", model=ort_model, tokenizer=tokenizer, device="cuda:0")
result = pipeline("Both the music and visual were astounding, not to mention the actors performance.")
```

## Combine optimizations

It is often possible to combine several of the optimization techniques described above to get the best inference performance possible for your model. For example, you can load a model in 4-bit, and then enable BetterTransformer with FlashAttention:
398
399
400
401
402

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

403
# load model in 4-bit
404
405
406
407
408
409
410
411
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config)

412
413
414
# enable BetterTransformer
model = model.to_bettertransformer()

415
416
417
input_text = "Hello my dog is cute and"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")

418
# enable FlashAttention
419
420
421
422
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
423
```