serialization.mdx 19.2 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
25

Steven Liu's avatar
Steven Liu committed
26
27
28
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
29

Steven Liu's avatar
Steven Liu committed
30
31
32
33
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<Tip>

You can also export 馃 Transformers models with the [`optimum.exporters.onnx` package](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)
from 馃 Optimum.

Once exported, a model can be:

- Optimized for inference via techniques such as quantization and graph optimization.
- Run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort),
which follow the same `AutoModel` API as the one you are used to in 馃 Transformers.
- Run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines),
which has the same API as the [`pipeline`] function in 馃 Transformers.

To explore all these features,  check out the [馃 Optimum library](https://github.com/huggingface/optimum).

</Tip>

lewtun's avatar
lewtun committed
52
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
58
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
59
- BERT
60
- BigBird
61
- BigBird-Pegasus
62
63
- Blenderbot
- BlenderbotSmall
64
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
65
- CamemBERT
66
- Chinese-CLIP
67
- CLIP
rooa's avatar
rooa committed
68
- CodeGen
69
- Conditional DETR
70
- ConvBERT
71
- ConvNeXT
72
- Data2VecText
73
- Data2VecVision
74
75
- DeBERTa
- DeBERTa-v2
76
- DeiT
regisss's avatar
regisss committed
77
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- DistilBERT
79
- ELECTRA
80
- ERNIE
81
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
82
- GPT Neo
83
- GPT-J
84
- GPT-Sw3
85
- GroupViT
86
- I-BERT
87
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
88
- LayoutLM
89
- LayoutLMv3
gcheron's avatar
gcheron committed
90
- LeViT
91
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
92
- LongT5
93
- M2M100
94
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
95
- mBART
96
- MobileBERT
97
- MobileNetV1
98
- MobileNetV2
99
- MobileViT
100
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
101
- OpenAI GPT-2
102
- OWL-ViT
103
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
104
- PLBart
105
- PoolFormer
Erin's avatar
Erin committed
106
- RemBERT
regisss's avatar
regisss committed
107
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
108
- RoBERTa
109
- RoBERTa-PreLayerNorm
110
- RoFormer
111
- SegFormer
112
- SqueezeBERT
113
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
114
- T5
115
- Table Transformer
116
- Vision Encoder decoder
lewtun's avatar
lewtun committed
117
- ViT
118
- Whisper
Jannis Vamvas's avatar
Jannis Vamvas committed
119
- X-MOD
Ritik Nandwal's avatar
Ritik Nandwal committed
120
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
121
- XLM-RoBERTa
122
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
123
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
124

lewtun's avatar
lewtun committed
125
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
126

lewtun's avatar
lewtun committed
127
128
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
129

Steven Liu's avatar
Steven Liu committed
130
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
131

132
133
134
135
136
137
138
139
<Tip>

The recommended way of exporting a model is now to use
[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli),
do not worry it is very similar to `transformers.onnx`!

</Tip>

Steven Liu's avatar
Steven Liu committed
140
141
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
142

lewtun's avatar
lewtun committed
143
144
145
146
147
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
151

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
152
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156
157
158
159

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
160
161
162
163
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
164
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
169
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
170
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
```

Steven Liu's avatar
Steven Liu committed
173
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176

```bash
Validating ONNX model...
177
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
178
179
180
181
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
182
183
```

Steven Liu's avatar
Steven Liu committed
184
185
186
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
187

lewtun's avatar
lewtun committed
188
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
189
190
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
191
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
192

lewtun's avatar
lewtun committed
193
194
195
196
197
198
199
200
201
202
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
203

Steven Liu's avatar
Steven Liu committed
204
205
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
206

lewtun's avatar
lewtun committed
207
208
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
209

lewtun's avatar
lewtun committed
210
211
212
213
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
214
215
```

Steven Liu's avatar
Steven Liu committed
216
217
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
218
219
220
221
222
223
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
224
225
226
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
227

Steven Liu's avatar
Steven Liu committed
228
<frameworkcontent> <pt>
229
230
231
232
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
233
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
234
235
236
237
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
240
241
242
243
244
245
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
246
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
247
```python
248
249
250
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
251
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
252
253
254
255
256
257
258
259
260
261
262
263
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
264
</tf> </frameworkcontent>
265

Steven Liu's avatar
Steven Liu committed
266
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
267

268
269
270
271
272
273
274
275
<Tip>

The recommended way of exporting a model is now to use `optimum.exporters.onnx`.
You can check the [馃 Optimum documentation](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)
to learn how to select a task.

</Tip>

Steven Liu's avatar
Steven Liu committed
276
277
278
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
279
280
281
282
283
284
285
286
287
288
289
290

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
291
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
292
293

```python
lewtun's avatar
lewtun committed
294
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
295

lewtun's avatar
lewtun committed
296
297
298
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
299
300
```

lewtun's avatar
lewtun committed
301
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
302
303
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
304

lewtun's avatar
lewtun committed
305
306
307
308
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
309

Steven Liu's avatar
Steven Liu committed
310
This displays the following logs:
lewtun's avatar
lewtun committed
311
312
313

```bash
Validating ONNX model...
314
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
315
316
317
318
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
319
320
```

Steven Liu's avatar
Steven Liu committed
321
322
323
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
324
325
326

<Tip>

Steven Liu's avatar
Steven Liu committed
327
328
329
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
330
331

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
332

333
334
335
336
337
338
339
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
340

Steven Liu's avatar
Steven Liu committed
341
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
342

343
344
345
346
347
348
349
350
351
<Tip>

If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is
supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures),
and if it is not, [contribute to 馃 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)
directly.

</Tip>

Steven Liu's avatar
Steven Liu committed
352
353
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
354

lewtun's avatar
lewtun committed
355
356
357
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
358

Steven Liu's avatar
Steven Liu committed
359
360
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
361

Steven Liu's avatar
Steven Liu committed
362
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
363

Steven Liu's avatar
Steven Liu committed
364
365
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
366

367
368
369
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
370
371
372

<Tip>

lewtun's avatar
lewtun committed
373
374
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377

</Tip>

lewtun's avatar
lewtun committed
378
379
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
380

lewtun's avatar
lewtun committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
```

Steven Liu's avatar
Steven Liu committed
397
398
399
400
401
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
404

<Tip>

Steven Liu's avatar
Steven Liu committed
405
406
407
408
409
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
410
411
412

</Tip>

Steven Liu's avatar
Steven Liu committed
413
414
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
415

lewtun's avatar
lewtun committed
416
417
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
418

lewtun's avatar
lewtun committed
419
420
421
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
422

Steven Liu's avatar
Steven Liu committed
423
424
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
425

lewtun's avatar
lewtun committed
426
427
428
429
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
430

lewtun's avatar
lewtun committed
431
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
432

lewtun's avatar
lewtun committed
433
434
435
436
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
437

Steven Liu's avatar
Steven Liu committed
438
439
440
441
442
443
444
445
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
446

lewtun's avatar
lewtun committed
447
448
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
449

lewtun's avatar
lewtun committed
450
451
452
453
454
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
455
456
457

<Tip>

Steven Liu's avatar
Steven Liu committed
458
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
459
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
460
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
461
462
463

</Tip>

Steven Liu's avatar
Steven Liu committed
464
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
465

Steven Liu's avatar
Steven Liu committed
466
467
468
469
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
470

lewtun's avatar
lewtun committed
471
472
473
474
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
475

lewtun's avatar
lewtun committed
476
477
478
479
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
480

lewtun's avatar
lewtun committed
481
482
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
483

Steven Liu's avatar
Steven Liu committed
484
485
486
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
487

lewtun's avatar
lewtun committed
488
489
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
490

lewtun's avatar
lewtun committed
491
492
493
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
494
495
496

<Tip>

Steven Liu's avatar
Steven Liu committed
497
498
499
500
501
502
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505

</Tip>

Steven Liu's avatar
Steven Liu committed
506
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
507

Steven Liu's avatar
Steven Liu committed
508
509
510
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
511

lewtun's avatar
lewtun committed
512
513
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
514

lewtun's avatar
lewtun committed
515
516
517
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
518
519
```

Steven Liu's avatar
Steven Liu committed
520
521
522
523
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
524

Steven Liu's avatar
Steven Liu committed
525
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
526

Steven Liu's avatar
Steven Liu committed
527
528
529
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
530

lewtun's avatar
lewtun committed
531
532
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
533
534
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
535
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
536

lewtun's avatar
lewtun committed
537
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
538
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
539
idea of what's involved.