serialization.mdx 19.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
25

Steven Liu's avatar
Steven Liu committed
26
27
28
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
29

Steven Liu's avatar
Steven Liu committed
30
31
32
33
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<Tip>

You can also export 馃 Transformers models with the [`optimum.exporters.onnx` package](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)
from 馃 Optimum.

Once exported, a model can be:

- Optimized for inference via techniques such as quantization and graph optimization.
- Run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort),
which follow the same `AutoModel` API as the one you are used to in 馃 Transformers.
- Run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines),
which has the same API as the [`pipeline`] function in 馃 Transformers.

To explore all these features,  check out the [馃 Optimum library](https://github.com/huggingface/optimum).

</Tip>

lewtun's avatar
lewtun committed
52
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
58
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
59
- BERT
60
- BigBird
61
- BigBird-Pegasus
62
63
- Blenderbot
- BlenderbotSmall
64
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
65
- CamemBERT
66
- Chinese-CLIP
67
- CLIP
rooa's avatar
rooa committed
68
- CodeGen
69
- Conditional DETR
70
- ConvBERT
71
- ConvNeXT
72
- Data2VecText
73
- Data2VecVision
74
75
- DeBERTa
- DeBERTa-v2
76
- DeiT
regisss's avatar
regisss committed
77
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- DistilBERT
79
- ELECTRA
80
- ERNIE
81
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
82
- GPT Neo
83
- GPT-J
84
- GroupViT
85
- I-BERT
86
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
87
- LayoutLM
88
- LayoutLMv3
gcheron's avatar
gcheron committed
89
- LeViT
90
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
91
- LongT5
92
- M2M100
93
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
94
- mBART
95
- MobileBERT
96
- MobileNetV1
97
- MobileNetV2
98
- MobileViT
99
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
100
- OpenAI GPT-2
101
- OWL-ViT
102
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
103
- PLBart
Erin's avatar
Erin committed
104
- RemBERT
regisss's avatar
regisss committed
105
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
106
- RoBERTa
107
- RoFormer
108
- SegFormer
109
- SqueezeBERT
110
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
111
- T5
112
- Table Transformer
113
- Vision Encoder decoder
lewtun's avatar
lewtun committed
114
- ViT
115
- Whisper
Ritik Nandwal's avatar
Ritik Nandwal committed
116
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
117
- XLM-RoBERTa
118
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
119
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
120

lewtun's avatar
lewtun committed
121
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
122

lewtun's avatar
lewtun committed
123
124
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
125

Steven Liu's avatar
Steven Liu committed
126
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
127

128
129
130
131
132
133
134
135
<Tip>

The recommended way of exporting a model is now to use
[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli),
do not worry it is very similar to `transformers.onnx`!

</Tip>

Steven Liu's avatar
Steven Liu committed
136
137
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
138

lewtun's avatar
lewtun committed
139
140
141
142
143
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
147

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
148
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
153
154
155

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
156
157
158
159
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
160
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
163
164
165
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
166
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
```

Steven Liu's avatar
Steven Liu committed
169
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172

```bash
Validating ONNX model...
173
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
174
175
176
177
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
```

Steven Liu's avatar
Steven Liu committed
180
181
182
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
183

lewtun's avatar
lewtun committed
184
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
185
186
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
187
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
188

lewtun's avatar
lewtun committed
189
190
191
192
193
194
195
196
197
198
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
199

Steven Liu's avatar
Steven Liu committed
200
201
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
202

lewtun's avatar
lewtun committed
203
204
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
205

lewtun's avatar
lewtun committed
206
207
208
209
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
```

Steven Liu's avatar
Steven Liu committed
212
213
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
214
215
216
217
218
219
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
220
221
222
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
223

Steven Liu's avatar
Steven Liu committed
224
<frameworkcontent> <pt>
225
226
227
228
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
229
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
230
231
232
233
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
238
239
240
241
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
242
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
243
```python
244
245
246
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
247
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
248
249
250
251
252
253
254
255
256
257
258
259
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
260
</tf> </frameworkcontent>
261

Steven Liu's avatar
Steven Liu committed
262
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
263

264
265
266
267
268
269
270
271
<Tip>

The recommended way of exporting a model is now to use `optimum.exporters.onnx`.
You can check the [馃 Optimum documentation](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)
to learn how to select a task.

</Tip>

Steven Liu's avatar
Steven Liu committed
272
273
274
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
275
276
277
278
279
280
281
282
283
284
285
286

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
287
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
288
289

```python
lewtun's avatar
lewtun committed
290
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
291

lewtun's avatar
lewtun committed
292
293
294
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
```

lewtun's avatar
lewtun committed
297
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
298
299
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
300

lewtun's avatar
lewtun committed
301
302
303
304
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
305

Steven Liu's avatar
Steven Liu committed
306
This displays the following logs:
lewtun's avatar
lewtun committed
307
308
309

```bash
Validating ONNX model...
310
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
311
312
313
314
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
315
316
```

Steven Liu's avatar
Steven Liu committed
317
318
319
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
320
321
322

<Tip>

Steven Liu's avatar
Steven Liu committed
323
324
325
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
326
327

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
328

329
330
331
332
333
334
335
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
336

Steven Liu's avatar
Steven Liu committed
337
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
338

339
340
341
342
343
344
345
346
347
<Tip>

If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is
supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures),
and if it is not, [contribute to 馃 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)
directly.

</Tip>

Steven Liu's avatar
Steven Liu committed
348
349
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
350

lewtun's avatar
lewtun committed
351
352
353
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
354

Steven Liu's avatar
Steven Liu committed
355
356
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
357

Steven Liu's avatar
Steven Liu committed
358
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
359

Steven Liu's avatar
Steven Liu committed
360
361
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
362

363
364
365
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368

<Tip>

lewtun's avatar
lewtun committed
369
370
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
371
372
373

</Tip>

lewtun's avatar
lewtun committed
374
375
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
376

lewtun's avatar
lewtun committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
391
392
```

Steven Liu's avatar
Steven Liu committed
393
394
395
396
397
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
398
399
400

<Tip>

Steven Liu's avatar
Steven Liu committed
401
402
403
404
405
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
408

</Tip>

Steven Liu's avatar
Steven Liu committed
409
410
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
411

lewtun's avatar
lewtun committed
412
413
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
414

lewtun's avatar
lewtun committed
415
416
417
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
418

Steven Liu's avatar
Steven Liu committed
419
420
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
421

lewtun's avatar
lewtun committed
422
423
424
425
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
426

lewtun's avatar
lewtun committed
427
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
428

lewtun's avatar
lewtun committed
429
430
431
432
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
433

Steven Liu's avatar
Steven Liu committed
434
435
436
437
438
439
440
441
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
442

lewtun's avatar
lewtun committed
443
444
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
445

lewtun's avatar
lewtun committed
446
447
448
449
450
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
451
452
453

<Tip>

Steven Liu's avatar
Steven Liu committed
454
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
455
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
456
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
459

</Tip>

Steven Liu's avatar
Steven Liu committed
460
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
461

Steven Liu's avatar
Steven Liu committed
462
463
464
465
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
466

lewtun's avatar
lewtun committed
467
468
469
470
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
471

lewtun's avatar
lewtun committed
472
473
474
475
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
476

lewtun's avatar
lewtun committed
477
478
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
479

Steven Liu's avatar
Steven Liu committed
480
481
482
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
483

lewtun's avatar
lewtun committed
484
485
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
486

lewtun's avatar
lewtun committed
487
488
489
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
490
491
492

<Tip>

Steven Liu's avatar
Steven Liu committed
493
494
495
496
497
498
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
501

</Tip>

Steven Liu's avatar
Steven Liu committed
502
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
503

Steven Liu's avatar
Steven Liu committed
504
505
506
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
507

lewtun's avatar
lewtun committed
508
509
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
510

lewtun's avatar
lewtun committed
511
512
513
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
514
515
```

Steven Liu's avatar
Steven Liu committed
516
517
518
519
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
520

Steven Liu's avatar
Steven Liu committed
521
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
522

Steven Liu's avatar
Steven Liu committed
523
524
525
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
526

lewtun's avatar
lewtun committed
527
528
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
529
530
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
531
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
532

lewtun's avatar
lewtun committed
533
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
534
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
535
idea of what's involved.