serialization.mdx 19.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
25

Steven Liu's avatar
Steven Liu committed
26
27
28
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
29

Steven Liu's avatar
Steven Liu committed
30
31
32
33
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<Tip>

You can also export 馃 Transformers models with the [`optimum.exporters.onnx` package](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)
from 馃 Optimum.

Once exported, a model can be:

- Optimized for inference via techniques such as quantization and graph optimization.
- Run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort),
which follow the same `AutoModel` API as the one you are used to in 馃 Transformers.
- Run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines),
which has the same API as the [`pipeline`] function in 馃 Transformers.

To explore all these features,  check out the [馃 Optimum library](https://github.com/huggingface/optimum).

</Tip>

lewtun's avatar
lewtun committed
52
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
58
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
59
- BERT
60
- BigBird
61
- BigBird-Pegasus
62
63
- Blenderbot
- BlenderbotSmall
64
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
65
- CamemBERT
66
- Chinese-CLIP
67
- CLIP
rooa's avatar
rooa committed
68
- CodeGen
69
- Conditional DETR
70
- ConvBERT
71
- ConvNeXT
72
- Data2VecText
73
- Data2VecVision
74
75
- DeBERTa
- DeBERTa-v2
76
- DeiT
regisss's avatar
regisss committed
77
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- DistilBERT
79
- ELECTRA
80
- ERNIE
81
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
82
- GPT Neo
83
- GPT-J
84
- GPT-Sw3
85
- GroupViT
86
- I-BERT
87
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
88
- LayoutLM
89
- LayoutLMv3
gcheron's avatar
gcheron committed
90
- LeViT
91
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
92
- LongT5
93
- M2M100
94
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
95
- mBART
96
- MobileBERT
97
- MobileNetV1
98
- MobileNetV2
99
- MobileViT
100
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
101
- OpenAI GPT-2
102
- OWL-ViT
103
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
104
- PLBart
Erin's avatar
Erin committed
105
- RemBERT
regisss's avatar
regisss committed
106
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
107
- RoBERTa
108
- RoBERTa-PreLayerNorm
109
- RoFormer
110
- SegFormer
111
- SqueezeBERT
112
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
113
- T5
114
- Table Transformer
115
- Vision Encoder decoder
lewtun's avatar
lewtun committed
116
- ViT
117
- Whisper
Ritik Nandwal's avatar
Ritik Nandwal committed
118
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
119
- XLM-RoBERTa
120
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
121
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
122

lewtun's avatar
lewtun committed
123
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
124

lewtun's avatar
lewtun committed
125
126
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
127

Steven Liu's avatar
Steven Liu committed
128
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
129

130
131
132
133
134
135
136
137
<Tip>

The recommended way of exporting a model is now to use
[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli),
do not worry it is very similar to `transformers.onnx`!

</Tip>

Steven Liu's avatar
Steven Liu committed
138
139
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
140

lewtun's avatar
lewtun committed
141
142
143
144
145
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
150
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
154
155
156
157

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
158
159
160
161
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
162
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
166
167
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
168
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
```

Steven Liu's avatar
Steven Liu committed
171
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174

```bash
Validating ONNX model...
175
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
176
177
178
179
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
```

Steven Liu's avatar
Steven Liu committed
182
183
184
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
185

lewtun's avatar
lewtun committed
186
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
187
188
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
189
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
190

lewtun's avatar
lewtun committed
191
192
193
194
195
196
197
198
199
200
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
201

Steven Liu's avatar
Steven Liu committed
202
203
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
204

lewtun's avatar
lewtun committed
205
206
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
207

lewtun's avatar
lewtun committed
208
209
210
211
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
```

Steven Liu's avatar
Steven Liu committed
214
215
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
216
217
218
219
220
221
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
222
223
224
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
225

Steven Liu's avatar
Steven Liu committed
226
<frameworkcontent> <pt>
227
228
229
230
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
231
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
232
233
234
235
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
239
240
241
242
243
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
244
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
245
```python
246
247
248
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
249
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
250
251
252
253
254
255
256
257
258
259
260
261
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
262
</tf> </frameworkcontent>
263

Steven Liu's avatar
Steven Liu committed
264
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
265

266
267
268
269
270
271
272
273
<Tip>

The recommended way of exporting a model is now to use `optimum.exporters.onnx`.
You can check the [馃 Optimum documentation](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)
to learn how to select a task.

</Tip>

Steven Liu's avatar
Steven Liu committed
274
275
276
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
277
278
279
280
281
282
283
284
285
286
287
288

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
289
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
290
291

```python
lewtun's avatar
lewtun committed
292
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
293

lewtun's avatar
lewtun committed
294
295
296
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
297
298
```

lewtun's avatar
lewtun committed
299
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
300
301
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
302

lewtun's avatar
lewtun committed
303
304
305
306
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
307

Steven Liu's avatar
Steven Liu committed
308
This displays the following logs:
lewtun's avatar
lewtun committed
309
310
311

```bash
Validating ONNX model...
312
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
313
314
315
316
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
```

Steven Liu's avatar
Steven Liu committed
319
320
321
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
322
323
324

<Tip>

Steven Liu's avatar
Steven Liu committed
325
326
327
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
328
329

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
330

331
332
333
334
335
336
337
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
338

Steven Liu's avatar
Steven Liu committed
339
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
340

341
342
343
344
345
346
347
348
349
<Tip>

If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is
supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures),
and if it is not, [contribute to 馃 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)
directly.

</Tip>

Steven Liu's avatar
Steven Liu committed
350
351
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
352

lewtun's avatar
lewtun committed
353
354
355
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
356

Steven Liu's avatar
Steven Liu committed
357
358
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
359

Steven Liu's avatar
Steven Liu committed
360
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
361

Steven Liu's avatar
Steven Liu committed
362
363
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
364

365
366
367
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
368
369
370

<Tip>

lewtun's avatar
lewtun committed
371
372
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
373
374
375

</Tip>

lewtun's avatar
lewtun committed
376
377
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
378

lewtun's avatar
lewtun committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
```

Steven Liu's avatar
Steven Liu committed
395
396
397
398
399
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
400
401
402

<Tip>

Steven Liu's avatar
Steven Liu committed
403
404
405
406
407
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
408
409
410

</Tip>

Steven Liu's avatar
Steven Liu committed
411
412
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
413

lewtun's avatar
lewtun committed
414
415
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
416

lewtun's avatar
lewtun committed
417
418
419
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
420

Steven Liu's avatar
Steven Liu committed
421
422
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
423

lewtun's avatar
lewtun committed
424
425
426
427
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
428

lewtun's avatar
lewtun committed
429
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
430

lewtun's avatar
lewtun committed
431
432
433
434
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
435

Steven Liu's avatar
Steven Liu committed
436
437
438
439
440
441
442
443
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
444

lewtun's avatar
lewtun committed
445
446
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
447

lewtun's avatar
lewtun committed
448
449
450
451
452
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
455

<Tip>

Steven Liu's avatar
Steven Liu committed
456
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
457
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
458
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461

</Tip>

Steven Liu's avatar
Steven Liu committed
462
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
463

Steven Liu's avatar
Steven Liu committed
464
465
466
467
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
468

lewtun's avatar
lewtun committed
469
470
471
472
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
473

lewtun's avatar
lewtun committed
474
475
476
477
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
478

lewtun's avatar
lewtun committed
479
480
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
481

Steven Liu's avatar
Steven Liu committed
482
483
484
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
485

lewtun's avatar
lewtun committed
486
487
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
488

lewtun's avatar
lewtun committed
489
490
491
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
492
493
494

<Tip>

Steven Liu's avatar
Steven Liu committed
495
496
497
498
499
500
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
501
502
503

</Tip>

Steven Liu's avatar
Steven Liu committed
504
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
505

Steven Liu's avatar
Steven Liu committed
506
507
508
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
509

lewtun's avatar
lewtun committed
510
511
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
512

lewtun's avatar
lewtun committed
513
514
515
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
516
517
```

Steven Liu's avatar
Steven Liu committed
518
519
520
521
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
522

Steven Liu's avatar
Steven Liu committed
523
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
524

Steven Liu's avatar
Steven Liu committed
525
526
527
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
528

lewtun's avatar
lewtun committed
529
530
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
531
532
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
533
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
534

lewtun's avatar
lewtun committed
535
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
536
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
537
idea of what's involved.