serialization.mdx 19.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
25

Steven Liu's avatar
Steven Liu committed
26
27
28
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
29

Steven Liu's avatar
Steven Liu committed
30
31
32
33
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<Tip>

You can also export 馃 Transformers models with the [`optimum.exporters.onnx` package](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model)
from 馃 Optimum.

Once exported, a model can be:

- Optimized for inference via techniques such as quantization and graph optimization.
- Run with ONNX Runtime via [`ORTModelForXXX` classes](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort),
which follow the same `AutoModel` API as the one you are used to in 馃 Transformers.
- Run with [optimized inference pipelines](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines),
which has the same API as the [`pipeline`] function in 馃 Transformers.

To explore all these features,  check out the [馃 Optimum library](https://github.com/huggingface/optimum).

</Tip>

lewtun's avatar
lewtun committed
52
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
53

54
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
58
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
59
- BERT
60
- BigBird
61
- BigBird-Pegasus
62
63
- Blenderbot
- BlenderbotSmall
64
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
65
- CamemBERT
66
- Chinese-CLIP
67
- CLIP
rooa's avatar
rooa committed
68
- CodeGen
69
- Conditional DETR
70
- ConvBERT
71
- ConvNeXT
72
- Data2VecText
73
- Data2VecVision
74
75
- DeBERTa
- DeBERTa-v2
76
- DeiT
regisss's avatar
regisss committed
77
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- DistilBERT
79
- ELECTRA
80
- ERNIE
81
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
82
- GPT Neo
83
- GPT-J
84
- GPT-Sw3
85
- GroupViT
86
- I-BERT
87
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
88
- LayoutLM
89
- LayoutLMv3
gcheron's avatar
gcheron committed
90
- LeViT
91
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
92
- LongT5
93
- M2M100
94
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
95
- mBART
96
- MobileBERT
97
- MobileNetV1
98
- MobileNetV2
99
- MobileViT
100
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
101
- OpenAI GPT-2
102
- OWL-ViT
103
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
104
- PLBart
Erin's avatar
Erin committed
105
- RemBERT
regisss's avatar
regisss committed
106
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
107
- RoBERTa
108
- RoFormer
109
- SegFormer
110
- SqueezeBERT
111
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
112
- T5
113
- Table Transformer
114
- Vision Encoder decoder
lewtun's avatar
lewtun committed
115
- ViT
116
- Whisper
Ritik Nandwal's avatar
Ritik Nandwal committed
117
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
118
- XLM-RoBERTa
119
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
120
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
121

lewtun's avatar
lewtun committed
122
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
123

lewtun's avatar
lewtun committed
124
125
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
126

Steven Liu's avatar
Steven Liu committed
127
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
128

129
130
131
132
133
134
135
136
<Tip>

The recommended way of exporting a model is now to use
[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli),
do not worry it is very similar to `transformers.onnx`!

</Tip>

Steven Liu's avatar
Steven Liu committed
137
138
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
139

lewtun's avatar
lewtun committed
140
141
142
143
144
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
149
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
154
155
156

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
157
158
159
160
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
161
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
164
165
166
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
167
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
```

Steven Liu's avatar
Steven Liu committed
170
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173

```bash
Validating ONNX model...
174
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
175
176
177
178
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
179
180
```

Steven Liu's avatar
Steven Liu committed
181
182
183
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
184

lewtun's avatar
lewtun committed
185
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
186
187
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
188
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
189

lewtun's avatar
lewtun committed
190
191
192
193
194
195
196
197
198
199
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
200

Steven Liu's avatar
Steven Liu committed
201
202
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
203

lewtun's avatar
lewtun committed
204
205
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
206

lewtun's avatar
lewtun committed
207
208
209
210
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
```

Steven Liu's avatar
Steven Liu committed
213
214
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
215
216
217
218
219
220
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
221
222
223
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
224

Steven Liu's avatar
Steven Liu committed
225
<frameworkcontent> <pt>
226
227
228
229
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
230
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
231
232
233
234
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
238
239
240
241
242
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
243
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
244
```python
245
246
247
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
248
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
249
250
251
252
253
254
255
256
257
258
259
260
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
261
</tf> </frameworkcontent>
262

Steven Liu's avatar
Steven Liu committed
263
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
264

265
266
267
268
269
270
271
272
<Tip>

The recommended way of exporting a model is now to use `optimum.exporters.onnx`.
You can check the [馃 Optimum documentation](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#selecting-a-task)
to learn how to select a task.

</Tip>

Steven Liu's avatar
Steven Liu committed
273
274
275
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
276
277
278
279
280
281
282
283
284
285
286
287

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
288
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290

```python
lewtun's avatar
lewtun committed
291
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
292

lewtun's avatar
lewtun committed
293
294
295
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
```

lewtun's avatar
lewtun committed
298
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
299
300
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
301

lewtun's avatar
lewtun committed
302
303
304
305
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
306

Steven Liu's avatar
Steven Liu committed
307
This displays the following logs:
lewtun's avatar
lewtun committed
308
309
310

```bash
Validating ONNX model...
311
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
312
313
314
315
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
316
317
```

Steven Liu's avatar
Steven Liu committed
318
319
320
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
321
322
323

<Tip>

Steven Liu's avatar
Steven Liu committed
324
325
326
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
327
328

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
329

330
331
332
333
334
335
336
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
337

Steven Liu's avatar
Steven Liu committed
338
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
339

340
341
342
343
344
345
346
347
348
<Tip>

If you wish to contribute by adding support for a model that cannot be currently exported, you should first check if it is
supported in [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/package_reference/configuration#supported-architectures),
and if it is not, [contribute to 馃 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/contribute)
directly.

</Tip>

Steven Liu's avatar
Steven Liu committed
349
350
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
351

lewtun's avatar
lewtun committed
352
353
354
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
355

Steven Liu's avatar
Steven Liu committed
356
357
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
358

Steven Liu's avatar
Steven Liu committed
359
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
360

Steven Liu's avatar
Steven Liu committed
361
362
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
363

364
365
366
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
367
368
369

<Tip>

lewtun's avatar
lewtun committed
370
371
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
372
373
374

</Tip>

lewtun's avatar
lewtun committed
375
376
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
377

lewtun's avatar
lewtun committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
```

Steven Liu's avatar
Steven Liu committed
394
395
396
397
398
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
401

<Tip>

Steven Liu's avatar
Steven Liu committed
402
403
404
405
406
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
409

</Tip>

Steven Liu's avatar
Steven Liu committed
410
411
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
412

lewtun's avatar
lewtun committed
413
414
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
415

lewtun's avatar
lewtun committed
416
417
418
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
419

Steven Liu's avatar
Steven Liu committed
420
421
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
422

lewtun's avatar
lewtun committed
423
424
425
426
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
427

lewtun's avatar
lewtun committed
428
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
429

lewtun's avatar
lewtun committed
430
431
432
433
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
434

Steven Liu's avatar
Steven Liu committed
435
436
437
438
439
440
441
442
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
443

lewtun's avatar
lewtun committed
444
445
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
446

lewtun's avatar
lewtun committed
447
448
449
450
451
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
452
453
454

<Tip>

Steven Liu's avatar
Steven Liu committed
455
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
456
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
457
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
460

</Tip>

Steven Liu's avatar
Steven Liu committed
461
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
462

Steven Liu's avatar
Steven Liu committed
463
464
465
466
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
467

lewtun's avatar
lewtun committed
468
469
470
471
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
472

lewtun's avatar
lewtun committed
473
474
475
476
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
477

lewtun's avatar
lewtun committed
478
479
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
480

Steven Liu's avatar
Steven Liu committed
481
482
483
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
484

lewtun's avatar
lewtun committed
485
486
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
487

lewtun's avatar
lewtun committed
488
489
490
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
491
492
493

<Tip>

Steven Liu's avatar
Steven Liu committed
494
495
496
497
498
499
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
500
501
502

</Tip>

Steven Liu's avatar
Steven Liu committed
503
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
504

Steven Liu's avatar
Steven Liu committed
505
506
507
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
508

lewtun's avatar
lewtun committed
509
510
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
511

lewtun's avatar
lewtun committed
512
513
514
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
515
516
```

Steven Liu's avatar
Steven Liu committed
517
518
519
520
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
521

Steven Liu's avatar
Steven Liu committed
522
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
523

Steven Liu's avatar
Steven Liu committed
524
525
526
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
527

lewtun's avatar
lewtun committed
528
529
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
530
531
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
532
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
533

lewtun's avatar
lewtun committed
534
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
535
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
536
idea of what's involved.