Unverified Commit 207594be authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Convert rst files (#14888)

* Convert all tutorials and guides

* Convert all remaining rst to mdx

* Track and fix bad links
parent b0c7d2ec
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
-->
# How to add a pipeline to 🤗 Transformers?
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
as it makes compatibility easier (even through other languages via JSON). Those will be the `inputs` of the
pipeline (`preprocess`).
Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of
`postprocess` method.
Start by inheriting the base class `Pipeline`. with the 4 methods needed to implement `preprocess`,
`_forward`, `postprocess` and `_sanitize_parameters`.
```python
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(....)
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
The structure of this breakdown is to support relatively seamless support for CPU/GPU, while supporting doing
pre/postprocessing on the CPU on different threads
`preprocess` will take the originally defined inputs, and turn them into something feedable to the model. It might
contain more information and is usually a `Dict`.
`_forward` is the implementation detail and is not meant to be called directly. `forward` is the preferred
called method as it contains safeguards to make sure everything is working on the expected device. If anything is
linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess.
`postprocess` methods will take the output of `_forward` and turn it into the final output that were decided
earlier.
`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization
time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`,
`_forward` and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
allows to keep the default arguments in the function definition which is always more "natural".
A classic example would be a `top_k` argument in the post processing in classification tasks.
```python
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
```
In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit
`_sanitize_parameters` to allow this new parameter.
```python
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
preprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy
without requiring users to understand new kind of objects. It's also relatively common to support many different types
of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
## Adding it to the list of supported tasks
Go to `src/transformers/pipelines/__init__.py` and fill in `SUPPORTED_TASKS` with your newly created pipeline.
If possible it should provide a default model.
## Adding tests
Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
The `run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by `model_mapping` and `tf_model_mapping`.
This is very important to test future compatibility, meaning if someone adds a new model for
`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's
impossible to check for actual values, that's why There is a helper `ANY` that will simply attempt to match the
output of the pipeline TYPE.
You also *need* to implement 2 (ideally 4) tests.
- `test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as `test_small_model_tf`.
- `test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as `test_small_model_pt`.
- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
How to add a pipeline to 🤗 Transformers?
=======================================================================================================================
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
as it makes compatibility easier (even through other languages via JSON). Those will be the :obj:`inputs` of the
pipeline (:obj:`preprocess`).
Then define the :obj:`outputs`. Same policy as the :obj:`inputs`. The simpler, the better. Those will be the outputs of
:obj:`postprocess` method.
Start by inheriting the base class :obj:`Pipeline`. with the 4 methods needed to implement :obj:`preprocess`,
:obj:`_forward`, :obj:`postprocess` and :obj:`_sanitize_parameters`.
.. code-block::
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(....)
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
The structure of this breakdown is to support relatively seamless support for CPU/GPU, while supporting doing
pre/postprocessing on the CPU on different threads
:obj:`preprocess` will take the originally defined inputs, and turn them into something feedable to the model. It might
contain more information and is usually a :obj:`Dict`.
:obj:`_forward` is the implementation detail and is not meant to be called directly. :obj:`forward` is the preferred
called method as it contains safeguards to make sure everything is working on the expected device. If anything is
linked to a real model it belongs in the :obj:`_forward` method, anything else is in the preprocess/postprocess.
:obj:`postprocess` methods will take the output of :obj:`_forward` and turn it into the final output that were decided
earlier.
:obj:`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization
time ``pipeline(...., maybe_arg=4)`` or at call time ``pipe = pipeline(...); output = pipe(...., maybe_arg=4)``.
The returns of :obj:`_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to :obj:`preprocess`,
:obj:`_forward` and :obj:`postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
allows to keep the default arguments in the function definition which is always more "natural".
A classic example would be a :obj:`top_k` argument in the post processing in classification tasks.
.. code-block::
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
In order to achieve that, we'll update our :obj:`postprocess` method with a default parameter to :obj:`5`. and edit
:obj:`_sanitize_parameters` to allow this new parameter.
.. code-block::
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
preprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy
without requiring users to understand new kind of objects. It's also relatively common to support many different types
of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
Adding it to the list of supported tasks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Go to ``src/transformers/pipelines/__init__.py`` and fill in :obj:`SUPPORTED_TASKS` with your newly created pipeline.
If possible it should provide a default model.
Adding tests
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create a new file ``tests/test_pipelines_MY_PIPELINE.py`` with example with the other tests.
The :obj:`run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by :obj:`model_mapping` and :obj:`tf_model_mapping`.
This is very important to test future compatibility, meaning if someone adds a new model for
:obj:`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's
impossible to check for actual values, that's why There is a helper :obj:`ANY` that will simply attempt to match the
output of the pipeline TYPE.
You also *need* to implement 2 (ideally 4) tests.
- :obj:`test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as :obj:`test_small_model_tf`.
- :obj:`test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as :obj:`test_small_model_pt`.
- :obj:`test_large_model_pt` (:obj:`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
- :obj:`test_large_model_tf` (:obj:`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
.. <!--Copyright 2020 The HuggingFace Team. All rights reserved.
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. specific language governing permissions and limitations under the License.
-->
BERTology # BERTology
-----------------------------------------------------------------------------------------------------------------------
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT
(that some call "BERTology"). Some good examples of this field are: (that some call "BERTology"). Some good examples of this field are:
* BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: - BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950 https://arxiv.org/abs/1905.05950
* Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650 - Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
* What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. - What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341 Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
...@@ -28,11 +27,10 @@ help people access the inner representations, mainly adapted from the great work ...@@ -28,11 +27,10 @@ help people access the inner representations, mainly adapted from the great work
(https://arxiv.org/abs/1905.10650): (https://arxiv.org/abs/1905.10650):
* accessing all the hidden-states of BERT/GPT/GPT-2, - accessing all the hidden-states of BERT/GPT/GPT-2,
* accessing all the attention weights for each head of BERT/GPT/GPT-2, - accessing all the attention weights for each head of BERT/GPT/GPT-2,
* retrieving heads output values and gradients to be able to compute head importance score and prune head as explained - retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650. in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: :prefix_link:`bertology.py To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/master/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on
<examples/research_projects/bertology/run_bertology.py>` while extract information and prune a model pre-trained on
GLUE. GLUE.
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Converting Tensorflow Checkpoints
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
that can be loaded using the `from_pretrained` methods of the library.
<Tip>
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
transformers >= 2.3.0 installation.
The documentation below reflects the **transformers-cli convert** command format.
</Tip>
## BERT
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/master/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification/run_glue.py) ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\
`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model:
```bash
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models).
## ALBERT
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will
need to have TensorFlow and PyTorch installed.
Here is an example of the conversion process for the pre-trained `ALBERT Base` model:
```bash
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models).
## OpenAI GPT
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\
)
```bash
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
```
## OpenAI GPT-2
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2))
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
```
## Transformer-XL
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
```bash
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers-cli convert --model_type transfo_xl \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config TRANSFO_XL_CONFIG] \
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
```
## XLNet
Here is an example of the conversion process for a pre-trained XLNet model:
```bash
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
```
## XLM
Here is an example of the conversion process for a pre-trained XLM model:
```bash
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
```
## T5
Here is an example of the conversion process for a pre-trained T5 model:
```bash
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin
```
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Converting Tensorflow Checkpoints
=======================================================================================================================
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
that can be loaded using the ``from_pretrained`` methods of the library.
.. note::
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
transformers >= 2.3.0 installation.
The documentation below reflects the **transformers-cli convert** command format.
BERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google
<https://github.com/google-research/bert#pre-trained-models>`_) in a PyTorch save file by using the
:prefix_link:`convert_bert_original_tf_checkpoint_to_pytorch.py
<src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py>` script.
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``) and the associated
configuration file (``bert_config.json``), and creates a PyTorch model for this configuration, loads the weights from
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
be imported using ``from_pretrained()`` (see example in :doc:`quicktour` , :prefix_link:`run_glue.py
<examples/pytorch/text-classification/run_glue.py>` ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with ``bert_model.ckpt``) but be sure to keep the configuration file (\
``bert_config.json``) and the vocabulary file (``vocab.txt``) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (``pip install
tensorflow``). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
.. code-block:: shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here
<https://github.com/google-research/bert#pre-trained-models>`__.
ALBERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
:prefix_link:`convert_albert_original_tf_checkpoint_to_pytorch.py
<src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py>` script.
The CLI takes as input a TensorFlow checkpoint (three files starting with ``model.ckpt-best``) and the accompanying
configuration file (``albert_config.json``), then creates and saves a PyTorch model. To run this conversion you will
need to have TensorFlow and PyTorch installed.
Here is an example of the conversion process for the pre-trained ``ALBERT Base`` model:
.. code-block:: shell
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here
<https://github.com/google-research/albert#pre-trained-models>`__.
OpenAI GPT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\
)
.. code-block:: shell
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
OpenAI GPT-2
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here
<https://github.com/openai/gpt-2>`__)
.. code-block:: shell
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
Transformer-XL
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here
<https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__)
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers-cli convert --model_type transfo_xl \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config TRANSFO_XL_CONFIG] \
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
XLNet
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained XLNet model:
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
XLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained XLM model:
.. code-block:: shell
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
T5
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained T5 model:
.. code-block:: shell
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Using tokenizers from 🤗 Tokenizers
The [`PreTrainedTokenizerFast`] depends on the [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.
Before getting in the specifics, let's first start by creating a dummy tokenizer in a few lines:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
We now have a tokenizer trained on the files we defined. We can either continue using it in that runtime, or save it to
a JSON file for future re-use.
## Loading directly from the tokenizer object
Let's see how to leverage this tokenizer object in the 🤗 Transformers library. The
[`PreTrainedTokenizerFast`] class allows for easy instantiation, by accepting the instantiated
*tokenizer* object as an argument:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.
## Loading from a JSON file
In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:
```python
>>> tokenizer.save("tokenizer.json")
```
The path to which we saved this file can be passed to the [`PreTrainedTokenizerFast`] initialization
method using the `tokenizer_file` parameter:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.
Using tokenizers from 🤗 Tokenizers
=======================================================================================================================
The :class:`~transformers.PreTrainedTokenizerFast` depends on the `tokenizers
<https://huggingface.co/docs/tokenizers>`__ library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.
Before getting in the specifics, let's first start by creating a dummy tokenizer in a few lines:
.. code-block::
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
We now have a tokenizer trained on the files we defined. We can either continue using it in that runtime, or save it to
a JSON file for future re-use.
Loading directly from the tokenizer object
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Let's see how to leverage this tokenizer object in the 🤗 Transformers library. The
:class:`~transformers.PreTrainedTokenizerFast` class allows for easy instantiation, by accepting the instantiated
`tokenizer` object as an argument:
.. code-block::
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to :doc:`the tokenizer
page <main_classes/tokenizer>` for more information.
Loading from a JSON file
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:
.. code-block::
>>> tokenizer.save("tokenizer.json")
The path to which we saved this file can be passed to the :class:`~transformers.PreTrainedTokenizerFast` initialization
method using the :obj:`tokenizer_file` parameter:
.. code-block::
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to :doc:`the tokenizer
page <main_classes/tokenizer>` for more information.
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# General Utilities
This page lists all of Transformers general utility functions that are found in the file `file_utils.py`.
Most of those are only useful if you are studying the general code in the library.
## Enums and namedtuples
[[autodoc]] file_utils.ExplicitEnum
[[autodoc]] file_utils.PaddingStrategy
[[autodoc]] file_utils.TensorType
## Special Decorators
[[autodoc]] file_utils.add_start_docstrings
[[autodoc]] file_utils.add_start_docstrings_to_model_forward
[[autodoc]] file_utils.add_end_docstrings
[[autodoc]] file_utils.add_code_sample_docstrings
[[autodoc]] file_utils.replace_return_docstrings
## Special Properties
[[autodoc]] file_utils.cached_property
## Other Utilities
[[autodoc]] file_utils._LazyModule
..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
General Utilities
-----------------------------------------------------------------------------------------------------------------------
This page lists all of Transformers general utility functions that are found in the file ``file_utils.py``.
Most of those are only useful if you are studying the general code in the library.
Enums and namedtuples
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.file_utils.ExplicitEnum
.. autoclass:: transformers.file_utils.PaddingStrategy
.. autoclass:: transformers.file_utils.TensorType
Special Decorators
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: transformers.file_utils.add_start_docstrings
.. autofunction:: transformers.file_utils.add_start_docstrings_to_model_forward
.. autofunction:: transformers.file_utils.add_end_docstrings
.. autofunction:: transformers.file_utils.add_code_sample_docstrings
.. autofunction:: transformers.file_utils.replace_return_docstrings
Special Properties
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.file_utils.cached_property
Other Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.file_utils._LazyModule
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Generation
This page lists all the utility functions used by [`~generation_utils.GenerationMixin.generate`],
[`~generation_utils.GenerationMixin.greedy_search`],
[`~generation_utils.GenerationMixin.sample`],
[`~generation_utils.GenerationMixin.beam_search`],
[`~generation_utils.GenerationMixin.beam_sample`], and
[`~generation_utils.GenerationMixin.group_beam_search`].
Most of those are only useful if you are studying the code of the generate methods in the library.
## Generate Outputs
The output of [`~generation_utils.GenerationMixin.generate`] is an instance of a subclass of
[`~file_utils.ModelOutput`]. This output is a data structure containing all the information returned
by [`~generation_utils.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
Here's an example:
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
```
The `generation_output` object is a [`~generation_utils.GreedySearchDecoderOnlyOutput`], as we can
see in the documentation of that class below, it means it has the following attributes:
- `sequences`: the generated sequences of tokens
- `scores` (optional): the prediction scores of the language modelling head, for each generation step
- `hidden_states` (optional): the hidden states of the model, for each generation step
- `attentions` (optional): the attention weights of the model, for each generation step
Here we have the `scores` since we passed along `output_scores=True`, but we don't have `hidden_states` and
`attentions` because we didn't pass `output_hidden_states=True` or `output_attentions=True`.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get `None`. Here for instance `generation_output.scores` are all the generated prediction scores of the
language modeling head, and `generation_output.attentions` is `None`.
When using our `generation_output` object as a tuple, it only keeps the attributes that don't have `None` values.
Here, for instance, it has two elements, `loss` then `logits`, so
```python
generation_output[:2]
```
will return the tuple `(generation_output.sequences, generation_output.scores)` for instance.
When using our `generation_output` object as a dictionary, it only keeps the attributes that don't have `None`
values. Here, for instance, it has two keys that are `sequences` and `scores`.
We document here all output types.
### GreedySearchOutput
[[autodoc]] generation_utils.GreedySearchDecoderOnlyOutput
[[autodoc]] generation_utils.GreedySearchEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxGreedySearchOutput
### SampleOutput
[[autodoc]] generation_utils.SampleDecoderOnlyOutput
[[autodoc]] generation_utils.SampleEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxSampleOutput
### BeamSearchOutput
[[autodoc]] generation_utils.BeamSearchDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSearchEncoderDecoderOutput
### BeamSampleOutput
[[autodoc]] generation_utils.BeamSampleDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSampleEncoderDecoderOutput
## LogitsProcessor
A [`LogitsProcessor`] can be used to modify the prediction scores of a language model head for
generation.
[[autodoc]] LogitsProcessor
- __call__
[[autodoc]] LogitsProcessorList
- __call__
[[autodoc]] LogitsWarper
- __call__
[[autodoc]] MinLengthLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] PrefixConstrainedLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessorList
- __call__
[[autodoc]] FlaxLogitsWarper
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
- __call__
[[autodoc]] FlaxTopPLogitsWarper
- __call__
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
## StoppingCriteria
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token).
[[autodoc]] StoppingCriteria
- __call__
[[autodoc]] StoppingCriteriaList
- __call__
[[autodoc]] MaxLengthCriteria
- __call__
[[autodoc]] MaxTimeCriteria
- __call__
## BeamSearch
[[autodoc]] BeamScorer
- process
- finalize
[[autodoc]] BeamSearchScorer
- process
- finalize
## Utilities
[[autodoc]] top_k_top_p_filtering
[[autodoc]] tf_top_k_top_p_filtering
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Utilities for Generation
-----------------------------------------------------------------------------------------------------------------------
This page lists all the utility functions used by :meth:`~transformers.generation_utils.GenerationMixin.generate`,
:meth:`~transformers.generation_utils.GenerationMixin.greedy_search`,
:meth:`~transformers.generation_utils.GenerationMixin.sample`,
:meth:`~transformers.generation_utils.GenerationMixin.beam_search`,
:meth:`~transformers.generation_utils.GenerationMixin.beam_sample`, and
:meth:`~transformers.generation_utils.GenerationMixin.group_beam_search`.
Most of those are only useful if you are studying the code of the generate methods in the library.
Generate Outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The output of :meth:`~transformers.generation_utils.GenerationMixin.generate` is an instance of a subclass of
:class:`~transformers.file_utils.ModelOutput`. This output is a data structure containing all the information returned
by :meth:`~transformers.generation_utils.GenerationMixin.generate`, but that can also be used as tuple or dictionary.
Here's an example:
.. code-block::
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
The ``generation_output`` object is a :class:`~transformers.generation_utils.GreedySearchDecoderOnlyOutput`, as we can
see in the documentation of that class below, it means it has the following attributes:
- ``sequences``: the generated sequences of tokens
- ``scores`` (optional): the prediction scores of the language modelling head, for each generation step
- ``hidden_states`` (optional): the hidden states of the model, for each generation step
- ``attentions`` (optional): the attention weights of the model, for each generation step
Here we have the ``scores`` since we passed along ``output_scores=True``, but we don't have ``hidden_states`` and
``attentions`` because we didn't pass ``output_hidden_states=True`` or ``output_attentions=True``.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get ``None``. Here for instance ``generation_output.scores`` are all the generated prediction scores of the
language modeling head, and ``generation_output.attentions`` is ``None``.
When using our ``generation_output`` object as a tuple, it only keeps the attributes that don't have ``None`` values.
Here, for instance, it has two elements, ``loss`` then ``logits``, so
.. code-block::
generation_output[:2]
will return the tuple ``(generation_output.sequences, generation_output.scores)`` for instance.
When using our ``generation_output`` object as a dictionary, it only keeps the attributes that don't have ``None``
values. Here, for instance, it has two keys that are ``sequences`` and ``scores``.
We document here all output types.
GreedySearchOutput
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.generation_utils.GreedySearchDecoderOnlyOutput
:members:
.. autoclass:: transformers.generation_utils.GreedySearchEncoderDecoderOutput
:members:
.. autoclass:: transformers.generation_flax_utils.FlaxGreedySearchOutput
:members:
SampleOutput
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.generation_utils.SampleDecoderOnlyOutput
:members:
.. autoclass:: transformers.generation_utils.SampleEncoderDecoderOutput
:members:
.. autoclass:: transformers.generation_flax_utils.FlaxSampleOutput
:members:
BeamSearchOutput
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.generation_utils.BeamSearchDecoderOnlyOutput
:members:
.. autoclass:: transformers.generation_utils.BeamSearchEncoderDecoderOutput
:members:
BeamSampleOutput
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: transformers.generation_utils.BeamSampleDecoderOnlyOutput
:members:
.. autoclass:: transformers.generation_utils.BeamSampleEncoderDecoderOutput
:members:
LogitsProcessor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A :class:`~transformers.LogitsProcessor` can be used to modify the prediction scores of a language model head for
generation.
.. autoclass:: transformers.LogitsProcessor
:members: __call__
.. autoclass:: transformers.LogitsProcessorList
:members: __call__
.. autoclass:: transformers.LogitsWarper
:members: __call__
.. autoclass:: transformers.MinLengthLogitsProcessor
:members: __call__
.. autoclass:: transformers.TemperatureLogitsWarper
:members: __call__
.. autoclass:: transformers.RepetitionPenaltyLogitsProcessor
:members: __call__
.. autoclass:: transformers.TopPLogitsWarper
:members: __call__
.. autoclass:: transformers.TopKLogitsWarper
:members: __call__
.. autoclass:: transformers.NoRepeatNGramLogitsProcessor
:members: __call__
.. autoclass:: transformers.NoBadWordsLogitsProcessor
:members: __call__
.. autoclass:: transformers.PrefixConstrainedLogitsProcessor
:members: __call__
.. autoclass:: transformers.HammingDiversityLogitsProcessor
:members: __call__
.. autoclass:: transformers.ForcedBOSTokenLogitsProcessor
:members: __call__
.. autoclass:: transformers.ForcedEOSTokenLogitsProcessor
:members: __call__
.. autoclass:: transformers.InfNanRemoveLogitsProcessor
:members: __call__
.. autoclass:: transformers.FlaxLogitsProcessor
:members: __call__
.. autoclass:: transformers.FlaxLogitsProcessorList
:members: __call__
.. autoclass:: transformers.FlaxLogitsWarper
:members: __call__
.. autoclass:: transformers.FlaxTemperatureLogitsWarper
:members: __call__
.. autoclass:: transformers.FlaxTopPLogitsWarper
:members: __call__
.. autoclass:: transformers.FlaxTopKLogitsWarper
:members: __call__
.. autoclass:: transformers.FlaxForcedBOSTokenLogitsProcessor
:members: __call__
.. autoclass:: transformers.FlaxForcedEOSTokenLogitsProcessor
:members: __call__
.. autoclass:: transformers.FlaxMinLengthLogitsProcessor
:members: __call__
StoppingCriteria
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A :class:`~transformers.StoppingCriteria` can be used to change when to stop generation (other than EOS token).
.. autoclass:: transformers.StoppingCriteria
:members: __call__
.. autoclass:: transformers.StoppingCriteriaList
:members: __call__
.. autoclass:: transformers.MaxLengthCriteria
:members: __call__
.. autoclass:: transformers.MaxTimeCriteria
:members: __call__
BeamSearch
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BeamScorer
:members: process, finalize
.. autoclass:: transformers.BeamSearchScorer
:members: process, finalize
Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: transformers.top_k_top_p_filtering
.. autofunction:: transformers.tf_top_k_top_p_filtering
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Custom Layers and Utilities
This page lists all the custom layers used by the library, as well as the utility functions it provides for modeling.
Most of those are only useful if you are studying the code of the models in the library.
## Pytorch custom modules
[[autodoc]] modeling_utils.Conv1D
[[autodoc]] modeling_utils.PoolerStartLogits
- forward
[[autodoc]] modeling_utils.PoolerEndLogits
- forward
[[autodoc]] modeling_utils.PoolerAnswerClass
- forward
[[autodoc]] modeling_utils.SquadHeadOutput
[[autodoc]] modeling_utils.SQuADHead
- forward
[[autodoc]] modeling_utils.SequenceSummary
- forward
## PyTorch Helper Functions
[[autodoc]] apply_chunking_to_forward
[[autodoc]] modeling_utils.find_pruneable_heads_and_indices
[[autodoc]] modeling_utils.prune_layer
[[autodoc]] modeling_utils.prune_conv1d_layer
[[autodoc]] modeling_utils.prune_linear_layer
## TensorFlow custom layers
[[autodoc]] modeling_tf_utils.TFConv1D
[[autodoc]] modeling_tf_utils.TFSharedEmbeddings
- call
[[autodoc]] modeling_tf_utils.TFSequenceSummary
## TensorFlow loss functions
[[autodoc]] modeling_tf_utils.TFCausalLanguageModelingLoss
[[autodoc]] modeling_tf_utils.TFMaskedLanguageModelingLoss
[[autodoc]] modeling_tf_utils.TFMultipleChoiceLoss
[[autodoc]] modeling_tf_utils.TFQuestionAnsweringLoss
[[autodoc]] modeling_tf_utils.TFSequenceClassificationLoss
[[autodoc]] modeling_tf_utils.TFTokenClassificationLoss
## TensorFlow Helper Functions
[[autodoc]] modeling_tf_utils.get_initializer
[[autodoc]] modeling_tf_utils.keras_serializable
[[autodoc]] modeling_tf_utils.shape_list
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Custom Layers and Utilities
-----------------------------------------------------------------------------------------------------------------------
This page lists all the custom layers used by the library, as well as the utility functions it provides for modeling.
Most of those are only useful if you are studying the code of the models in the library.
Pytorch custom modules
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_utils.Conv1D
.. autoclass:: transformers.modeling_utils.PoolerStartLogits
:members: forward
.. autoclass:: transformers.modeling_utils.PoolerEndLogits
:members: forward
.. autoclass:: transformers.modeling_utils.PoolerAnswerClass
:members: forward
.. autoclass:: transformers.modeling_utils.SquadHeadOutput
.. autoclass:: transformers.modeling_utils.SQuADHead
:members: forward
.. autoclass:: transformers.modeling_utils.SequenceSummary
:members: forward
PyTorch Helper Functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: transformers.apply_chunking_to_forward
.. autofunction:: transformers.modeling_utils.find_pruneable_heads_and_indices
.. autofunction:: transformers.modeling_utils.prune_layer
.. autofunction:: transformers.modeling_utils.prune_conv1d_layer
.. autofunction:: transformers.modeling_utils.prune_linear_layer
TensorFlow custom layers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_utils.TFConv1D
.. autoclass:: transformers.modeling_tf_utils.TFSharedEmbeddings
:members: call
.. autoclass:: transformers.modeling_tf_utils.TFSequenceSummary
TensorFlow loss functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_utils.TFCausalLanguageModelingLoss
:members:
.. autoclass:: transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss
:members:
.. autoclass:: transformers.modeling_tf_utils.TFMultipleChoiceLoss
:members:
.. autoclass:: transformers.modeling_tf_utils.TFQuestionAnsweringLoss
:members:
.. autoclass:: transformers.modeling_tf_utils.TFSequenceClassificationLoss
:members:
.. autoclass:: transformers.modeling_tf_utils.TFTokenClassificationLoss
:members:
TensorFlow Helper Functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: transformers.modeling_tf_utils.get_initializer
.. autofunction:: transformers.modeling_tf_utils.keras_serializable
.. autofunction:: transformers.modeling_tf_utils.shape_list
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for pipelines
This page lists all the utility functions the library provides for pipelines.
Most of those are only useful if you are studying the code of the models in the library.
## Argument handling
[[autodoc]] pipelines.ArgumentHandler
[[autodoc]] pipelines.ZeroShotClassificationArgumentHandler
[[autodoc]] pipelines.QuestionAnsweringArgumentHandler
## Data format
[[autodoc]] pipelines.PipelineDataFormat
[[autodoc]] pipelines.CsvPipelineDataFormat
[[autodoc]] pipelines.JsonPipelineDataFormat
[[autodoc]] pipelines.PipedPipelineDataFormat
## Utilities
[[autodoc]] pipelines.PipelineException
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Utilities for pipelines
-----------------------------------------------------------------------------------------------------------------------
This page lists all the utility functions the library provides for pipelines.
Most of those are only useful if you are studying the code of the models in the library.
Argument handling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.pipelines.ArgumentHandler
.. autoclass:: transformers.pipelines.ZeroShotClassificationArgumentHandler
.. autoclass:: transformers.pipelines.QuestionAnsweringArgumentHandler
Data format
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.pipelines.PipelineDataFormat
:members:
.. autoclass:: transformers.pipelines.CsvPipelineDataFormat
:members:
.. autoclass:: transformers.pipelines.JsonPipelineDataFormat
:members:
.. autoclass:: transformers.pipelines.PipedPipelineDataFormat
:members:
Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.pipelines.PipelineException
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Tokenizers
This page lists all the utility functions used by the tokenizers, mainly the class
[`~tokenization_utils_base.PreTrainedTokenizerBase`] that implements the common methods between
[`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] and the mixin
[`~tokenization_utils_base.SpecialTokensMixin`].
Most of those are only useful if you are studying the code of the tokenizers in the library.
## PreTrainedTokenizerBase
[[autodoc]] tokenization_utils_base.PreTrainedTokenizerBase
- __call__
- all
## SpecialTokensMixin
[[autodoc]] tokenization_utils_base.SpecialTokensMixin
## Enums and namedtuples
[[autodoc]] tokenization_utils_base.TruncationStrategy
[[autodoc]] tokenization_utils_base.CharSpan
[[autodoc]] tokenization_utils_base.TokenSpan
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment