run_squad.py 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
30
31
from torch.utils.data import (
    DataLoader, RandomSampler, SequentialSampler, TensorDataset)
32
33
from torch.utils.data.distributed import DistributedSampler

34
35
36
37
38
39
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
40

41
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
42
                                  BertForQuestionAnswering, BertTokenizer,
erenup's avatar
erenup committed
43
                                  RobertaForQuestionAnswering, RobertaTokenizer, RobertaConfig,
thomwolf's avatar
thomwolf committed
44
45
46
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
47
                                  XLNetTokenizer,
Lysandre's avatar
Lysandre committed
48
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
49
50
51
                                  AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering, XLMTokenizer,
                                  )
thomwolf's avatar
thomwolf committed
52

Lysandre's avatar
Lysandre committed
53
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
54
55
56

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
57
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
erenup's avatar
erenup committed
58
                  for conf in (BertConfig, RobertaConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
59
60

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
61
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
erenup's avatar
erenup committed
62
    'roberta': (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
thomwolf's avatar
thomwolf committed
63
64
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
Lysandre's avatar
Lysandre committed
65
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
66
    'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
67
68
}

69

thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

77

78
79
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
80

81

82
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
83
84
85
86
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

87
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
88
89
90
91
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
92
93

    if args.max_steps > 0:
94
        t_total = args.max_steps
95
96
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
97
    else:
98
99
        t_total = len(
            train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
100

101
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
102
103
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
104
105
106
107
        {'params': [p for n, p in model.named_parameters() if not any(
            nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(
            nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
108
    ]
109
110
111
112
113
114
115
116
117
118
119
120
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(
            os.path.join(args.model_name_or_path, 'optimizer.pt')))
        scheduler.load_state_dict(torch.load(
            os.path.join(args.model_name_or_path, 'scheduler.pt')))
LysandreJik's avatar
Cleanup  
LysandreJik committed
121

thomwolf's avatar
thomwolf committed
122
123
124
125
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
126
127
128
129
130
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

        model, optimizer = amp.initialize(
            model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
131

132
133
134
135
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
136
137
138
139
140
141
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
142
143
144
145
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
146
147
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
148
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
149
150
151
                args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
152
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
153

Lysandre's avatar
Lysandre committed
154
    global_step = 1
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
173
    tr_loss, logging_loss = 0.0, 0.0
174
    model.zero_grad()
175
176
177
178
179
    train_iterator = trange(epochs_trained, int(
        args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    # Added here for reproductibility (even between python 2 and 3)
    set_seed(args)

180
    for _ in train_iterator:
181
182
        epoch_iterator = tqdm(train_dataloader, desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
183
        for step, batch in enumerate(epoch_iterator):
184
185
186
187
188
189

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

190
            model.train()
thomwolf's avatar
thomwolf committed
191
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
192
193
194
195

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
erenup's avatar
erenup committed
196
                'token_type_ids': None if args.model_type in ['xlm', 'roberta', 'distilbert'] else batch[2],
LysandreJik's avatar
Cleanup  
LysandreJik committed
197
                'start_positions': batch[3],
erenup's avatar
erenup committed
198
                'end_positions':   batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
199
200
            }

201
202
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
203
                               'p_mask':       batch[6]})
204
205
                if args.version_2_with_negative:
                    inputs.update({'is_impossible': batch[7]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
206
            outputs = model(**inputs)
207
208
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
209

210
            if args.n_gpu > 1:
211
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
212
213
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
214

215
216
217
218
219
220
221
222
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
223
                if args.fp16:
224
225
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
226
                else:
227
228
                    torch.nn.utils.clip_grad_norm_(
                        model.parameters(), args.max_grad_norm)
229

230
                optimizer.step()
231
                scheduler.step()  # Update learning rate schedule
232
233
234
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
235
                # Log metrics
236
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
237
238
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
239
240
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
241
242
243
244
245
246
                            tb_writer.add_scalar(
                                'eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar(
                        'lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar(
                        'loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
247
248
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
249
                # Save model checkpoint
250
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
251
252
                    output_dir = os.path.join(
                        args.output_dir, 'checkpoint-{}'.format(global_step))
253
254
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
255
256
257
                    # Take care of distributed/parallel training
                    model_to_save = model.module if hasattr(
                        model, 'module') else model
258
                    model_to_save.save_pretrained(output_dir)
259
260
261
262
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args, os.path.join(
                        output_dir, 'training_args.bin'))
263
264
                    logger.info("Saving model checkpoint to %s", output_dir)

265
266
267
268
269
270
271
                    torch.save(optimizer.state_dict(), os.path.join(
                        output_dir, 'optimizer.pt'))
                    torch.save(scheduler.state_dict(), os.path.join(
                        output_dir, 'scheduler.pt'))
                    logger.info(
                        "Saving optimizer and scheduler states to %s", output_dir)

272
273
274
275
276
277
278
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
279
280
281
    if args.local_rank in [-1, 0]:
        tb_writer.close()

282
283
284
285
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
286
287
    dataset, examples, features = load_and_cache_examples(
        args, tokenizer, evaluate=True, output_examples=True)
288
289
290
291
292

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
293

294
    # Note that DistributedSampler samples randomly
295
    eval_sampler = SequentialSampler(dataset)
296
297
    eval_dataloader = DataLoader(
        dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
298

ronakice's avatar
ronakice committed
299
    # multi-gpu evaluate
300
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
301
302
        model = torch.nn.DataParallel(model)

303
304
305
306
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
307

308
    all_results = []
309
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
310

311
312
313
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
314

315
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
316
317
            inputs = {
                'input_ids':      batch[0],
erenup's avatar
erenup committed
318
319
                'attention_mask': batch[1],
                'token_type_ids': None if args.model_type in ['xlm', 'roberta', 'distilbert'] else batch[2],
LysandreJik's avatar
LysandreJik committed
320
            }
321
            example_indices = batch[3]
322

LysandreJik's avatar
Cleanup  
LysandreJik committed
323
            # XLNet and XLM use more arguments for their predictions
324
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
325
326
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

327
328
329
330
331
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
332

LysandreJik's avatar
LysandreJik committed
333
334
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
335
336
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
337
338
339
340
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
341
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
342
343
344
                cls_logits = output[4]

                result = SquadResult(
345
346
347
                    unique_id, start_logits, end_logits,
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
LysandreJik's avatar
LysandreJik committed
348
349
350
351
352
353
354
355
356
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

357
            all_results.append(result)
358

359
    evalTime = timeit.default_timer() - start_time
360
361
    logger.info("  Evaluation done in total %f secs (%f sec per example)",
                evalTime, evalTime / len(dataset))
362

thomwolf's avatar
thomwolf committed
363
    # Compute predictions
364
365
366
367
    output_prediction_file = os.path.join(
        args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(
        args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
368

369
    if args.version_2_with_negative:
370
371
        output_null_log_odds_file = os.path.join(
            args.output_dir, "null_odds_{}.json".format(prefix))
372
373
    else:
        output_null_log_odds_file = None
374

LysandreJik's avatar
Cleanup  
LysandreJik committed
375
    # XLNet and XLM use a more complex post-processing procedure
376
    if args.model_type in ['xlnet', 'xlm']:
377
378
379
380
        start_n_top = model.config.start_n_top if hasattr(
            model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(
            model, "config") else model.module.config.end_n_top
Lysandre's avatar
Lysandre committed
381

382
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
383
384
385
386
                                                    args.max_answer_length, output_prediction_file,
                                                    output_nbest_file, output_null_log_odds_file,
                                                    start_n_top, end_n_top,
                                                    args.version_2_with_negative, tokenizer, args.verbose_logging)
387
    else:
388
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
389
390
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
thomwolf's avatar
thomwolf committed
391
                        args.version_2_with_negative, args.null_score_diff_threshold, tokenizer)
392

LysandreJik's avatar
Cleanup  
LysandreJik committed
393
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
394
    results = squad_evaluate(examples, predictions)
395
396
    return results

397

398
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
399
    if args.local_rank not in [-1, 0] and not evaluate:
400
401
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
402

403
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
404
405
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
406
        'dev' if evaluate else 'train',
407
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
408
409
410
411
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
412
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
413
414
        logger.info("Loading features from cached file %s",
                    cached_features_file)
415
416
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
417
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
418
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
419

420
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
421
422
423
            try:
                import tensorflow_datasets as tfds
            except ImportError:
424
425
                raise ImportError(
                    "If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
426
427

            if args.version_2_with_negative:
428
429
                logger.warn(
                    "tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
430
431

            tfds_examples = tfds.load("squad")
432
433
            examples = SquadV1Processor().get_examples_from_dataset(
                tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
434
435
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
436
437
438
439
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
440

441
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
442
443
444
445
446
447
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
erenup's avatar
erenup committed
448
449
            return_dataset='pt',
            threads=args.threads,
Lysandre's avatar
Lysandre committed
450
451
        )

thomwolf's avatar
thomwolf committed
452
        if args.local_rank in [-1, 0]:
453
454
455
456
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save({"features": features, "dataset": dataset},
                       cached_features_file)
thomwolf's avatar
thomwolf committed
457

VictorSanh's avatar
VictorSanh committed
458
    if args.local_rank == 0 and not evaluate:
459
460
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
461

462
463
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
464
465
    return dataset

466
467
468
469

def main():
    parser = argparse.ArgumentParser()

470
    # Required parameters
471
472
473
474
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
475
476
477
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

478
    # Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
479
    parser.add_argument("--data_dir", default=None, type=str,
480
481
482
483
484
485
486
487
                        help="The input data dir. Should contain the .json files for the task." +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
    parser.add_argument("--train_file", default=None, type=str,
                        help="The input training file. If a data dir is specified, will look for the file there" +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="The input evaluation file. If a data dir is specified, will look for the file there" +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
488
489
490
491
492
493
494
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
495
496
497
498
499
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

500
501
502
503
504
505
506
507
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
508
509
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
510
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
511
                        help="Whether to run eval on the dev set.")
512
513
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
514
    parser.add_argument("--do_lower_case", action='store_true',
515
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
516

517
518
519
520
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
521
522
523
524
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
525
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
526
                        help="Weight decay if we apply some.")
527
528
529
530
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
531
532
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
533
534
535
536
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
537
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
538
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
539
540
541
542
543
544
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
545

546
547
548
549
550
551
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
552
    parser.add_argument("--no_cuda", action='store_true',
553
                        help="Whether not to use CUDA when available")
554
555
556
557
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
558
    parser.add_argument('--seed', type=int, default=42,
559
                        help="random seed for initialization")
560

thomwolf's avatar
thomwolf committed
561
    parser.add_argument("--local_rank", type=int, default=-1,
562
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
563
564
565
566
567
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
568
569
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
erenup's avatar
erenup committed
570
571

    parser.add_argument('--threads', type=int, default=1, help='multiple threads for converting example to features')
572
573
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
574
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
575
576
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
577

578
    # Setup distant debugging if needed
579
580
581
582
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
583
584
        ptvsd.enable_attach(
            address=(args.server_ip, args.server_port), redirect_output=True)
585
586
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
587
    # Setup CUDA, GPU & distributed training
588
    if args.local_rank == -1 or args.no_cuda:
589
590
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
591
592
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
593
594
595
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
596
597
        args.n_gpu = 1
    args.device = device
598

thomwolf's avatar
thomwolf committed
599
    # Setup logging
600
601
602
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
603
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
604
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
605

606
607
    # Set seed
    set_seed(args)
608

thomwolf's avatar
thomwolf committed
609
    # Load pretrained model and tokenizer
610
    if args.local_rank not in [-1, 0]:
611
612
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
613

614
    args.model_type = args.model_type.lower()
615
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
616
617
618
619
620
621
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
622
623
                                        from_tf=bool(
                                            '.ckpt' in args.model_name_or_path),
thomwolf's avatar
thomwolf committed
624
625
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
626
627

    if args.local_rank == 0:
628
629
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
630

thomwolf's avatar
thomwolf committed
631
    model.to(args.device)
632

633
634
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
635
636
637
638
639
640
641
642
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
643
644
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
645

thomwolf's avatar
thomwolf committed
646
    # Training
647
    if args.do_train:
648
649
        train_dataset = load_and_cache_examples(
            args, tokenizer, evaluate=False, output_examples=False)
650
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
651
652
        logger.info(" global_step = %s, average loss = %s",
                    global_step, tr_loss)
653

thomwolf's avatar
thomwolf committed
654
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
655
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
656
657
658
659
660
661
662
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
663
664
        # Take care of distributed/parallel training
        model_to_save = model.module if hasattr(model, 'module') else model
665
666
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
667
668

        # Good practice: save your training arguments together with the trained model
669
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
670

671
        # Load a trained model and vocabulary that you have fine-tuned
672
673
674
675
        model = model_class.from_pretrained(
            args.output_dir, force_download=True)
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
676
677
        model.to(args.device)

thomwolf's avatar
thomwolf committed
678
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
679
680
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
681
682
683
684
685
686
687
688
689
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
690

691
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
692

693
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
694
            # Reload the model
695
696
697
698
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(
                checkpoint, force_download=True)
699
            model.to(args.device)
thomwolf's avatar
thomwolf committed
700
701

            # Evaluate
702
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
703

704
705
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v)
                          for k, v in result.items())
706
            results.update(result)
thomwolf's avatar
thomwolf committed
707

708
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
709

710
    return results
711
712
713
714


if __name__ == "__main__":
    main()