"tasks/dialctrl/finetune.py" did not exist on "a6ba254fa78b063f7367d2495b9bd4b64c1eb7db"
test_pipelines_image_segmentation.py 26.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
import requests
24
25
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
28
    AutoImageProcessor,
29
    AutoModelForImageSegmentation,
30
    AutoModelForInstanceSegmentation,
31
    DetrForSegmentation,
32
    ImageSegmentationPipeline,
33
    MaskFormerForInstanceSegmentation,
34
35
36
    is_vision_available,
    pipeline,
)
37
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
38
39
40
41
42
43
44
45
46
47
48
49
50
51

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


52
53
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
54
55
56
57
58
59
60
61
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
62
63


64
65
66
67
68
69
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


70
71
72
73
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
74
75
76
77
78
79
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
80
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
81
    }
82

83
84
    def get_test_pipeline(self, model, tokenizer, processor):
        image_segmenter = ImageSegmentationPipeline(model=model, image_processor=processor)
85
86
87
88
89
90
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
91
92
93
94
95
96
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
97
98
        self.assertIsInstance(outputs, list)
        n = len(outputs)
99
100
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
101
102
103
104
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
105
106
107
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
108

109
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
110

111
        # RGBA
112
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
113
114
115
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
116
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
117
118
119
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
120
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
121
122
123
124
125
126
127
128
129
130
131
132
133
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
134
        batch = [
135
136
137
138
139
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
140
        ]
141
        outputs = image_segmenter(
142
143
144
145
146
            batch,
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
            batch_size=batch_size,
147
        )
148
        self.assertEqual(len(batch), len(outputs))
149
        self.assertEqual(len(outputs[0]), n)
150
151
        self.assertEqual(
            [
152
153
154
155
156
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
157
            ],
158
159
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
160
161
162
163
164
165
166
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

190
191
    @require_torch
    def test_small_model_pt(self):
192
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
193
194

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
195
        image_processor = AutoImageProcessor.from_pretrained(model_id)
196
197
        image_segmenter = ImageSegmentationPipeline(
            model=model,
198
            image_processor=image_processor,
199
200
201
202
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
203
204
        )

205
206
207
208
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

209
        # Shortening by hashing
210
        for o in outputs:
211
            o["mask"] = mask_to_test_readable(o["mask"])
212

213
        # This is extremely brittle, and those values are made specific for the CI.
214
215
216
217
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
218
                    "score": 0.004,
219
                    "label": "LABEL_215",
220
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
221
                },
222
            ],
223
224
225
226
227
228
229
230
231
232
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
233
                o["mask"] = mask_to_test_readable(o["mask"])
234
235
236
237
238
239

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
240
                        "score": 0.004,
241
                        "label": "LABEL_215",
242
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
243
244
245
246
                    },
                ],
                [
                    {
247
                        "score": 0.004,
248
                        "label": "LABEL_215",
249
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
250
                    },
251
                ],
252
253
254
            ],
        )

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

301
        for o in output:
302
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
303
304
305
306
307
308
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
309
                    "mask": {"shape": (480, 640)},
310
311
312
313
                    "score": None,
                },
                {
                    "label": "LABEL_101",
314
                    "mask": {"shape": (480, 640)},
315
316
317
318
                    "score": None,
                },
                {
                    "label": "LABEL_215",
319
                    "mask": {"shape": (480, 640)},
320
321
322
323
324
                    "score": None,
                },
            ],
        )

325
326
327
328
329
330
331
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
332
            o["mask"] = mask_to_test_readable(o["mask"])
333
334
335
336

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
337
338
339
340
341
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
342
343
344
                {
                    "score": None,
                    "label": "LABEL_1",
345
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
346
347
348
349
                },
            ],
        )

350
351
352
353
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
354
355
356
357
358
359
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
360

361
362
363
364
365
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
366
        for o in outputs:
367
            o["mask"] = mask_to_test_readable(o["mask"])
368
369
370
371

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
402
403
404
405
406
407
408
409
410
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
411
412

        # Shortening by hashing
413
414
        for output in outputs:
            for o in output:
415
                o["mask"] = mask_to_test_readable(o["mask"])
416
417
418
419
420

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
451
452
                ],
                [
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
483
484
485
486
487
488
489
490
491
492
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

493
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
494
495
        # Shortening by hashing
        for o in outputs:
496
            o["mask"] = mask_to_test_readable(o["mask"])
497
498
499
500

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
501
502
503
504
505
506
507
508
509
510
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
511
512
513
            ],
        )

514
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
515
516

        for o in outputs:
517
            o["mask"] = mask_to_test_readable(o["mask"])
518
519
520
521

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
547
548
            ],
        )
549
550
551
552

    @require_torch
    @slow
    def test_maskformer(self):
553
        threshold = 0.8
554
555
        model_id = "facebook/maskformer-swin-base-ade"

556
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
Yih-Dar's avatar
Yih-Dar committed
557
        image_processor = AutoImageProcessor.from_pretrained(model_id)
558

Yih-Dar's avatar
Yih-Dar committed
559
        image_segmenter = pipeline("image-segmentation", model=model, image_processor=image_processor)
560
561

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
562
        file = image[0]["file"]
563
        outputs = image_segmenter(file, threshold=threshold)
564

565
        # Shortening by hashing
566
        for o in outputs:
567
            o["mask"] = mask_to_test_readable(o["mask"])
568
569
570
571

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
607
608
            ],
        )
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

    @require_torch
    @slow
    def test_oneformer(self):
        image_segmenter = pipeline(model="shi-labs/oneformer_ade20k_swin_tiny")

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        file = image[0]["file"]
        outputs = image_segmenter(file, threshold=0.99)
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "3a92904d4c", "white_pixels": 118131, "shape": (512, 683)},
                },
                {
                    "score": 0.9992,
                    "label": "sky",
                    "mask": {"hash": "fa2300cc9a", "white_pixels": 231565, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, threshold=0.99, subtask="instance")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.9991,
                    "label": "sky",
                    "mask": {"hash": "8b1ffad016", "white_pixels": 230566, "shape": (512, 683)},
                },
                {
                    "score": 0.9981,
                    "label": "grass",
                    "mask": {"hash": "9bbdf83d3d", "white_pixels": 119130, "shape": (512, 683)},
                },
            ],
        )

        # Different task
        outputs = image_segmenter(file, subtask="semantic")
        # Shortening by hashing
        for o in outputs:
            o["mask"] = mask_to_test_readable(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "wall",
                    "mask": {"hash": "897fb20b7f", "white_pixels": 14506, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "building",
                    "mask": {"hash": "f2a68c63e4", "white_pixels": 125019, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "sky",
                    "mask": {"hash": "e0ca3a548e", "white_pixels": 135330, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "tree",
                    "mask": {"hash": "7c9544bcac", "white_pixels": 16263, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "road, route",
                    "mask": {"hash": "2c7704e491", "white_pixels": 2143, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "grass",
                    "mask": {"hash": "bf6c2867e0", "white_pixels": 53040, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "plant",
                    "mask": {"hash": "93c4b7199e", "white_pixels": 3335, "shape": (512, 683)},
                },
                {
                    "score": None,
                    "label": "house",
                    "mask": {"hash": "93ec419ad5", "white_pixels": 60, "shape": (512, 683)},
                },
            ],
        )