"docs/source/vscode:/vscode.git/clone" did not exist on "28a22834bf609b27d0178b5ba99224f69577a3b6"
modeling_utils.py 129 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import gc
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import json
19
import os
20
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
import shutil
import tempfile
23
from contextlib import contextmanager
24
from dataclasses import dataclass
25
from functools import partial
Sylvain Gugger's avatar
Sylvain Gugger committed
26
from pathlib import Path
27
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
28
29

import torch
30
from torch import Tensor, device, nn
31
from torch.nn import CrossEntropyLoss
32

33
34
from requests import HTTPError

35
from .activations import get_activation
36
from .configuration_utils import PretrainedConfig
37
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
38
from .dynamic_module_utils import custom_object_save
39
from .generation_utils import GenerationMixin
40
41
42
43
44
45
46
47
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
48
from .utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
49
    DUMMY_INPUTS,
50
    FLAX_WEIGHTS_NAME,
51
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
52
53
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
54
    WEIGHTS_INDEX_NAME,
55
    WEIGHTS_NAME,
56
    EntryNotFoundError,
57
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
58
    PushToHubMixin,
59
60
    RepositoryNotFoundError,
    RevisionNotFoundError,
61
    cached_path,
62
    has_file,
63
    hf_bucket_url,
64
    is_offline_mode,
65
    is_remote_url,
66
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
67
    replace_return_docstrings,
68
)
69
from .utils.versions import require_version_core
70

Aymeric Augustin's avatar
Aymeric Augustin committed
71

Lysandre Debut's avatar
Lysandre Debut committed
72
logger = logging.get_logger(__name__)
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

_init_weights = True


@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
        _init_weights = True


thomwolf's avatar
thomwolf committed
94
95
96
97
98
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
99
        r"""A placeholder identity operator that is argument-insensitive."""
100

thomwolf's avatar
thomwolf committed
101
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
102
            super().__init__()
thomwolf's avatar
thomwolf committed
103
104
105
106

        def forward(self, input):
            return input

107

Lysandre Debut's avatar
Lysandre Debut committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
142
143
144
145
146
147
def convert_file_size_to_int(size: Union[int, str]):
    """
    Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).

    Args:
        size (`int` or `str`): The size to convert. Will be directly returned if an `int`.

    Example:

    ```py
148
    >>> convert_file_size_to_int("1MiB")
Sylvain Gugger's avatar
Sylvain Gugger committed
149
150
151
152
153
154
155
156
157
158
159
160
    1048576
    ```
    """
    if isinstance(size, int):
        return size
    if size.upper().endswith("GIB"):
        return int(size[:-3]) * (2**30)
    if size.upper().endswith("MIB"):
        return int(size[:-3]) * (2**20)
    if size.upper().endswith("KIB"):
        return int(size[:-3]) * (2**10)
    if size.upper().endswith("GB"):
161
162
        int_size = int(size[:-2]) * (10**9)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
163
    if size.upper().endswith("MB"):
164
165
        int_size = int(size[:-2]) * (10**6)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
166
    if size.upper().endswith("KB"):
167
168
        int_size = int(size[:-2]) * (10**3)
        return int_size // 8 if size.endswith("b") else int_size
Sylvain Gugger's avatar
Sylvain Gugger committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")


def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
    bit_search = re.search("[^\d](\d+)$", str(dtype))
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


def shard_checkpoint(state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB"):
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = []
    current_block = {}
    current_block_size = 0
    total_size = 0

    for key, weight in state_dict.items():
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if current_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append(current_block)
            current_block = {}
            current_block_size = 0

        current_block[key] = weight
        current_block_size += weight_size
        total_size += weight_size

    # Add the last block
    sharded_state_dicts.append(current_block)

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
        return {WEIGHTS_NAME: sharded_state_dicts[0]}, None

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
        shard_file = WEIGHTS_NAME.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


def get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
    local_files_only=False,
    use_auth_token=None,
    user_agent=None,
    revision=None,
    mirror=None,
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
    with open(index_filename, "r") as f:
        index = json.loads(f.read())

    shard_filenames = sorted(list(set(index["weight_map"].values())))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        shard_filenames = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
        return shard_filenames, sharded_metadata

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    cached_filenames = []
    for shard_filename in shard_filenames:
        shard_url = hf_bucket_url(
            pretrained_model_name_or_path, filename=shard_filename, revision=revision, mirror=mirror
        )

        try:
            # Load from URL
            cached_filename = cached_path(
                shard_url,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )
        # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
        # we don't have to catch them here.
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is "
                "required according to the checkpoint index."
            )
        except HTTPError:
            raise EnvironmentError(
320
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try again "
Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                "after checking your internet connection."
            )

        cached_filenames.append(cached_filename)

    return cached_filenames, sharded_metadata


def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
    try:
        return torch.load(checkpoint_file, map_location="cpu")
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: nn.Module, prefix=""):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            # because zero3 puts placeholders in model params, this context
            # manager gathers (unpartitions) the params of the current layer, then loads from
            # the state dict and then re-partitions them again
            with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    module._load_from_state_dict(*args)
        else:
            module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load, prefix=start_prefix)

    return error_msgs


407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # meta device was added in pt=1.9
    require_version_core("torch>=1.9")

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


def _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix):
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

    if is_deepspeed_zero3_enabled():
        raise ValueError("low_cpu_mem_usage arg cannot currently be used with DeepSpeed ZeRO-3")

    error_msgs = []

    # materialize state_dict entries one by one on CPU
    for k in loaded_state_dict_keys:
        if k in state_dict:
            submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
            if submodule is not None:
                param_dtype = getattr(submodule, param_name).dtype
                new_val = state_dict[k].to(param_dtype)
                if isinstance(getattr(submodule, param_name), torch.nn.Parameter):
                    new_val = torch.nn.Parameter(new_val)
                setattr(submodule, param_name, new_val)

    return error_msgs


496
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
497
    """
498
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
499
500
    """

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
528
529
530
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
531
532
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
533
534
535
536
537
538
539
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
540
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
541
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
542
        """
543
544
545
546
547
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

548
    @property
549
    def device(self) -> device:
550
        """
551
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
552
        device).
553
        """
Lysandre Debut's avatar
Lysandre Debut committed
554
        return get_parameter_device(self)
555

556
    @property
557
    def dtype(self) -> torch.dtype:
558
        """
559
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
560
        """
Lysandre Debut's avatar
Lysandre Debut committed
561
        return get_parameter_dtype(self)
562
563

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
564
565
566
567
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
568
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
569
570

        Returns:
571
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
572
        """
573
574
575
576
577
578
579
580
581
582
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
583
584
585

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
586
        elif self.dtype in [torch.bfloat16, torch.float32]:
587
588
589
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
590
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
591
592
            )

593
594
        return encoder_extended_attention_mask

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    def create_extended_attention_mask_for_decoder(self, input_shape, attention_mask, device):
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
618
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
619
620

        Arguments:
621
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
622
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
623
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
624
                The shape of the input to the model.
625
            device: (`torch.device`):
Sylvain Gugger's avatar
Sylvain Gugger committed
626
                The device of the input to the model.
627
628

        Returns:
629
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
630
631
632
633
634
635
636
637
638
639
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
640
641
642
                extended_attention_mask = self.create_extended_attention_mask_for_decoder(
                    input_shape, attention_mask, device
                )
643
644
645
646
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
647
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
648
649
650
651
652
653
654
655
656
657
658
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
659
660
661
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
662
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
663
664
665
        Prepare the head mask if needed.

        Args:
666
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
667
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
668
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
669
                The number of hidden layers in the model.
670
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
671
672
                Whether or not the attentions scores are computed by chunks or not.

673
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
674
675
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
676
677
678
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
679
680
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
681
682
683
684
685
686
687
688
689
690
691
692
693
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
694
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
695
696
        return head_mask

697
698
699
700
701
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
702
            only_trainable (`bool`, *optional*, defaults to `False`):
703
704
                Whether or not to return only the number of trainable parameters

705
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
706
707
708
                Whether or not to return only the number of non-embeddings parameters

        Returns:
709
            `int`: The number of parameters.
710
711
        """

712
713
714
715
716
717
718
719
720
721
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
722
723
724
725
726
727

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
728
            inputs (`dict`): The model inputs.
729
730

        Returns:
731
            `int`: The total number of tokens.
732
        """
733
734
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
735
        else:
736
            logger.warning(
737
738
739
740
741
742
743
744
745
746
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
747
748
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
749
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
750
751

        Args:
752
            batch_size (`int`):
753
754
                The batch size for the forward pass.

755
            sequence_length (`int`):
756
757
                The number of tokens in each line of the batch.

758
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
759
760
761
                Whether or not to count embedding and softmax operations.

        Returns:
762
            `int`: The number of floating-point operations.
763
764
765
766
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
767

Sylvain Gugger's avatar
Sylvain Gugger committed
768
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
769
770
    r"""
    Base class for all models.
771

Sylvain Gugger's avatar
Sylvain Gugger committed
772
773
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
774

775
776
        - resize the input embeddings,
        - prune heads in the self-attention heads.
777

778
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
779

Sylvain Gugger's avatar
Sylvain Gugger committed
780
781
782
783
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
784

Sylvain Gugger's avatar
Sylvain Gugger committed
785
786
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
787
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
788

Sylvain Gugger's avatar
Sylvain Gugger committed
789
790
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
791
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
792
793
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
794
    """
795
    config_class = None
796
    base_model_prefix = ""
797
    main_input_name = "input_ids"
798
    _auto_class = None
799

800
801
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
802
    _keys_to_ignore_on_load_missing = None
803
804
805
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
806
    _keys_to_ignore_on_load_unexpected = None
807
808
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
809
    _keys_to_ignore_on_save = None
810

811
    is_parallelizable = False
812
    supports_gradient_checkpointing = False
813

814
    @property
815
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
816
        """
817
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
818
        """
819
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
820

821
822
823
824
825
826
827
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

828
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
829
        super().__init__()
830
831
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
832
833
834
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
835
            )
836
        # Save config and origin of the pretrained weights if given in model
837
        self.config = config
838
        self.name_or_path = config.name_or_path
839
840
841
842
843
844
845
846
847
848
849
850
851
852

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
853

854
855
856
857
858
859
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
860
861
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
862
863
864
865
866
867
868
869
870
871
872
873
874
875
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
876
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
894
            dtype (`torch.dtype`):
895
896
897
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
898
899
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
900

901
902
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
903
904
905
906
907
908
909
910
911
912
913
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

914
    @property
915
916
    def base_model(self) -> nn.Module:
        """
917
        `torch.nn.Module`: The main body of the model.
918
        """
919
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
920

921
    def get_input_embeddings(self) -> nn.Module:
922
923
924
925
        """
        Returns the model's input embeddings.

        Returns:
926
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
927
        """
928
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
929
930
931
932
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
933

934
    def set_input_embeddings(self, value: nn.Module):
935
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
936
        Set model's input embeddings.
937
938

        Args:
939
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
940
941
942
943
944
945
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
946

947
    def get_output_embeddings(self) -> nn.Module:
948
949
950
951
        """
        Returns the model's output embeddings.

        Returns:
952
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
953
        """
954
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
955

956
957
958
959
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
960
        raise NotImplementedError(f"Make sure `_init_weights` is implemented for {self.__class__}")
961

962
    def tie_weights(self):
963
964
        """
        Tie the weights between the input embeddings and the output embeddings.
965

Sylvain Gugger's avatar
Sylvain Gugger committed
966
967
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
968
        """
969
970
971
972
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
973

974
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
975
976
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
977
978
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
979
980
981
982
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

983
984
985
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
986
987
988
989
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
990
991
992
993
994
995
996
997
998
999

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1000
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1022
1023
1024
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1025
1026
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1027
                            # thus skip this step and subtract one layer pos from encoder
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1056
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1057
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1058
        if self.config.torchscript:
1059
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1060
        else:
1061
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1062

Sam Shleifer's avatar
Sam Shleifer committed
1063
        if getattr(output_embeddings, "bias", None) is not None:
1064
            output_embeddings.bias.data = nn.functional.pad(
1065
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1066
1067
1068
1069
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1070
1071
                "constant",
                0,
1072
            )
1073
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1074
            output_embeddings.out_features = input_embeddings.num_embeddings
1075

1076
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
1077
        """
1078
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1079

1080
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1081

1082
        Arguments:
1083
            new_num_tokens (`int`, *optional*):
1084
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1085
1086
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1087
1088

        Return:
1089
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1090
        """
1091
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
1092
1093
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1094
1095
1096

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1097
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1098
1099

        # Tie weights again if needed
1100
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1101

thomwolf's avatar
thomwolf committed
1102
1103
        return model_embeds

1104
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1105
1106
1107
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
1108
1109
1110
1111
1112
1113
1114

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1115
        return self.get_input_embeddings()
1116

1117
    def _get_resized_embeddings(
1118
1119
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
1120
1121
1122
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1123
1124

        Args:
1125
            old_embeddings (`torch.nn.Embedding`):
1126
                Old embeddings to be resized.
1127
            new_num_tokens (`int`, *optional*):
1128
                New number of tokens in the embedding matrix.
1129
1130

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1131
1132
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
                ``torch.nn.Embedding``` module of the model without doing anything.
1133
1134

        Return:
1135
1136
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1137
1138
1139
1140
        """
        if new_num_tokens is None:
            return old_embeddings

1141
1142
1143
1144
1145
1146
1147
1148
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1149
1150
1151
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1152
1153
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
1154
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. "
1155
1156
1157
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

1158
        # Build new embeddings
1159
1160
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
        new_embeddings.to(self.device, dtype=old_embeddings.weight.dtype)
1161
1162
1163
1164

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

1165
        # Copy token embeddings from the previous weights
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1177
1178
1179

        return new_embeddings

1180
    def _get_resized_lm_head(
1181
1182
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1183
1184
1185
1186
1187
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1188
            old_lm_head (`torch.nn.Linear`):
1189
                Old lm head liner layer to be resized.
1190
            new_num_tokens (`int`, *optional*):
1191
1192
1193
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1194
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
Sylvain Gugger's avatar
Sylvain Gugger committed
1195
1196
1197
                ``torch.nn.Linear``` module of the model without doing anything. transposed (`bool`, *optional*,
                defaults to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is
                `lm_head_dim, vocab_size` else `vocab_size, lm_head_dim`.
1198
1199

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1200
1201
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1202
1203
1204
1205
        """
        if new_num_tokens is None:
            return old_lm_head

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1217
1218
1219
1220
1221
1222

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
1223
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. "
1224
                f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}."
1225
1226
1227
1228
1229
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
1230
1231
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
        new_lm_head = new_lm_head.to(self.device, dtype=old_lm_head.weight.dtype)
1232
1233
1234
1235
1236
1237

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1238
1239
1240
1241
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1242
1243
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1258
        else:
1259
1260
1261
1262
1263
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1264

1265
1266
1267
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1268
1269
1270

        return new_lm_head

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1283
    def init_weights(self):
1284
        """
1285
        If needed prunes and maybe initializes weights.
1286
        """
1287
1288
1289
1290
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1291
1292
1293
1294
1295
1296
1297
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1298

1299
1300
1301
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1302

1303
        Arguments:
1304
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1305
1306
1307
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1308
        """
1309
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1310
        for layer, heads in heads_to_prune.items():
1311
1312
1313
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1314
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1315

1316
    def gradient_checkpointing_enable(self):
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1327
    def gradient_checkpointing_disable(self):
1328
1329
1330
1331
1332
1333
1334
1335
1336
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1347
1348
1349
1350
1351
1352
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1353
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1354
        max_shard_size: Union[int, str] = "10GB",
Sylvain Gugger's avatar
Sylvain Gugger committed
1355
        **kwargs,
1356
    ):
1357
1358
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1359
        `[`~PreTrainedModel.from_pretrained`]` class method.
1360

1361
        Arguments:
1362
            save_directory (`str` or `os.PathLike`):
1363
                Directory to which to save. Will be created if it doesn't exist.
1364
            save_config (`bool`, *optional*, defaults to `True`):
1365
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
Sylvain Gugger's avatar
Sylvain Gugger committed
1366
1367
                to call this function on all processes. In this case, set `save_config=True` only on the main process
                to avoid race conditions.
1368
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1369
1370
1371
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1372
            save_function (`Callable`):
1373
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1374
1375
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1376
                Whether or not to push your model to the Hugging Face model hub after saving it.
1377

1378
                <Tip warning={true}>
1379

Sylvain Gugger's avatar
Sylvain Gugger committed
1380
1381
1382
                Using `push_to_hub=True` will synchronize the repository you are pushing to with `save_directory`,
                which requires `save_directory` to be a local clone of the repo you are pushing to if it's an existing
                folder. Pass along `temp_dir=True` to use a temporary directory instead.
1383
1384

                </Tip>
1385

Sylvain Gugger's avatar
Sylvain Gugger committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1397
            kwargs:
1398
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1399
        """
1400
        if os.path.isfile(save_directory):
1401
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1402
            return
1403
1404
1405
1406
1407

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo = self._create_or_get_repo(save_directory, **kwargs)

1408
        os.makedirs(save_directory, exist_ok=True)
1409

Julien Chaumond's avatar
Julien Chaumond committed
1410
        # Only save the model itself if we are using distributed training
1411
        model_to_save = unwrap_model(self)
1412

1413
1414
1415
1416
1417
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1418
1419
1420
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1421
1422
1423
1424
1425
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1426
1427
1428
1429
1430
1431
1432
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1433
1434

        # Handle the case where some state_dict keys shouldn't be saved
1435
        if self._keys_to_ignore_on_save is not None:
1436
            for ignore_key in self._keys_to_ignore_on_save:
1437
1438
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1439

Sylvain Gugger's avatar
Sylvain Gugger committed
1440
1441
1442
1443
1444
1445
1446
1447
        # Shard the model if it is too big.
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size)

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
            if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename):
                os.remove(full_filename)
1448

Sylvain Gugger's avatar
Sylvain Gugger committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
        # Save the model
        for shard_file, shard in shards.items():
            save_function(shard, os.path.join(save_directory, shard_file))

        if index is None:
            logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
        else:
            save_index_file = os.path.join(save_directory, WEIGHTS_INDEX_NAME)
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
1466

Sylvain Gugger's avatar
Sylvain Gugger committed
1467
        if push_to_hub:
1468
            url = self._push_to_hub(repo, commit_message=commit_message)
Sylvain Gugger's avatar
Sylvain Gugger committed
1469
1470
            logger.info(f"Model pushed to the hub in this commit: {url}")

1471
    @classmethod
1472
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1473
1474
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1475

Sylvain Gugger's avatar
Sylvain Gugger committed
1476
1477
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1478

1479
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1480
1481
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1482

1483
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1484
        weights are discarded.
1485

1486
        Parameters:
1487
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1488
1489
                Can be either:

1490
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1491
1492
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1493
1494
1495
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1496
1497
1498
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1499
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1500
1501
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
1502
1503
1504
1505
1506
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
1507
1508
                Can be either:

1509
1510
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
1511

1512
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1513
1514
                be automatically loaded when:

1515
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1516
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1517
1518
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1519
1520
1521
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
1522
1523
1524
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
1525
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
1526
1527
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
1528
1529
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1530
            from_tf (`bool`, *optional*, defaults to `False`):
1531
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
1532
1533
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
1534
                Load the model weights from a Flax checkpoint save file (see docstring of
1535
1536
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1537
1538
1539
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1540
            force_download (`bool`, *optional*, defaults to `False`):
1541
1542
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1543
            resume_download (`bool`, *optional*, defaults to `False`):
1544
1545
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1546
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1547
1548
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1549
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1550
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1551
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
1552
                Whether or not to only look at local files (i.e., do not try to download the model).
1553
            use_auth_token (`str` or *bool*, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1554
1555
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
1556
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1557
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1558
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1559
                identifier allowed by git.
1560
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1561
1562
1563
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1564
            _fast_init(`bool`, *optional*, defaults to `True`):
1565
1566
                Whether or not to disable fast initialization.

1567
1568
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
1569
1570
1571
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
1572

1573
                </Tip>
1574

1575
1576
1577
1578
1579
1580
            low_cpu_mem_usage(`bool`, *optional*, defaults to `False`):
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
1581
            kwargs (remaining dictionary of keyword arguments, *optional*):
1582
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1583
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1584
1585
                automatically loaded:

1586
1587
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1588
                      already been done)
1589
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1590
1591
1592
1593
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1594
1595
1596
1597
1598
1599
1600
1601
1602

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1603
1604
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
1605
1606
1607
1608
1609
1610
1611

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1612

1613
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1614
        >>> model = BertModel.from_pretrained("bert-base-uncased")
1615
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1616
        >>> model = BertModel.from_pretrained("./test/saved_model/")
1617
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1618
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1619
1620
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1621
1622
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
1623
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
1624
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
1643
1644
1645
1646
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1647
        from_flax = kwargs.pop("from_flax", False)
1648
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1649
1650
1651
1652
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1653
        local_files_only = kwargs.pop("local_files_only", False)
1654
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1655
        revision = kwargs.pop("revision", None)
1656
        mirror = kwargs.pop("mirror", None)
1657
1658
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1659
        _fast_init = kwargs.pop("_fast_init", True)
1660
        torch_dtype = kwargs.pop("torch_dtype", None)
1661
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
1662
1663

        from_pt = not (from_tf | from_flax)
1664
1665
1666
1667

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1668

1669
1670
1671
1672
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1673
1674
1675
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1676
            config, model_kwargs = cls.config_class.from_pretrained(
1677
1678
1679
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1680
                force_download=force_download,
1681
                resume_download=resume_download,
1682
                proxies=proxies,
1683
                local_files_only=local_files_only,
1684
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1685
                revision=revision,
1686
1687
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1688
                **kwargs,
1689
1690
1691
            )
        else:
            model_kwargs = kwargs
1692

Sylvain Gugger's avatar
Sylvain Gugger committed
1693
1694
1695
1696
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
1697
        # Load model
thomwolf's avatar
thomwolf committed
1698
        if pretrained_model_name_or_path is not None:
1699
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1700
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1701
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1702
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1703
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1704
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1705
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1706
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1707
1708
1709
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1710
1711
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1712
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
1713
1714
1715
1716
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)):
                    # Load from a sharded PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
                    is_sharded = True
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                        "weights."
                    )
                elif os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME):
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
1732
                else:
1733
                    raise EnvironmentError(
1734
1735
                        f"Error no file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or "
                        f"{FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
1736
                    )
1737
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1738
                archive_file = pretrained_model_name_or_path
1739
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1740
1741
1742
1743
1744
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1745
                archive_file = pretrained_model_name_or_path + ".index"
1746
            else:
1747
1748
1749
1750
1751
1752
1753
1754
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1755
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1756
                    pretrained_model_name_or_path,
1757
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1758
                    revision=revision,
1759
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1760
                )
1761

thomwolf's avatar
thomwolf committed
1762
            try:
1763
                # Load from URL or cache if already cached
1764
1765
1766
1767
1768
1769
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1770
                    local_files_only=local_files_only,
1771
                    use_auth_token=use_auth_token,
1772
                    user_agent=user_agent,
1773
                )
1774

1775
            except RepositoryNotFoundError:
1776
1777
1778
1779
1780
1781
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                    "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
                    "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
                    "login` and pass `use_auth_token=True`."
                )
1782
            except RevisionNotFoundError:
1783
1784
1785
1786
1787
                raise EnvironmentError(
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                    "this model name. Check the model page at "
                    f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
                )
1788
            except EntryNotFoundError:
1789
                if filename == WEIGHTS_NAME:
Sylvain Gugger's avatar
Sylvain Gugger committed
1790
1791
1792
1793
1794
1795
1796
                    try:
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        archive_file = hf_bucket_url(
                            pretrained_model_name_or_path,
                            filename=WEIGHTS_INDEX_NAME,
                            revision=revision,
                            mirror=mirror,
1797
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1798
1799
1800
1801
1802
1803
1804
1805
1806
                        resolved_archive_file = cached_path(
                            archive_file,
                            cache_dir=cache_dir,
                            force_download=force_download,
                            proxies=proxies,
                            resume_download=resume_download,
                            local_files_only=local_files_only,
                            use_auth_token=use_auth_token,
                            user_agent=user_agent,
1807
                        )
Sylvain Gugger's avatar
Sylvain Gugger committed
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
                        is_sharded = True
                    except EntryNotFoundError:
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "mirror": mirror,
                            "proxies": proxies,
                            "use_auth_token": use_auth_token,
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                                "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                                "weights."
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME} but "
                                "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                                "weights."
                            )
                        else:
                            raise EnvironmentError(
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}, "
                                f"{TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
                            )
1835
1836
1837
1838
                else:
                    raise EnvironmentError(
                        f"{pretrained_model_name_or_path} does not appear to have a file named {filename}."
                    )
1839
            except HTTPError as err:
1840
                raise EnvironmentError(
1841
1842
1843
1844
1845
                    f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
                    f"{err}"
                )
            except ValueError:
                raise EnvironmentError(
1846
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in the cached "
1847
1848
1849
                    f"files and it looks like {pretrained_model_name_or_path} is not the path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}.\n"
1850
1851
1852
                    "Checkout your internet connection or see how to run the library in offline mode at "
                    "'https://huggingface.co/docs/transformers/installation#offline-mode'."
                )
1853
            except EnvironmentError:
1854
1855
1856
1857
1858
1859
                raise EnvironmentError(
                    f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or "
                    f"{FLAX_WEIGHTS_NAME}."
1860
                )
1861

thomwolf's avatar
thomwolf committed
1862
            if resolved_archive_file == archive_file:
1863
                logger.info(f"loading weights file {archive_file}")
1864
            else:
1865
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
1866
        else:
thomwolf's avatar
thomwolf committed
1867
            resolved_archive_file = None
1868

Sylvain Gugger's avatar
Sylvain Gugger committed
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
            # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
                revision=revision,
                mirror=mirror,
            )

1886
1887
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
1888
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
1889
1890
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
1891

1892
1893
1894
1895
1896
1897
1898
1899
1900
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
            #    weights entry - we assume all weights are of the same dtype
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
Sylvain Gugger's avatar
Sylvain Gugger committed
1901
1902
1903
1904
1905
1906
1907
1908
                        if is_sharded and "dtype" in sharded_metadata:
                            torch_dtype = sharded_metadata["dtype"]
                        elif not is_sharded:
                            torch_dtype = next(iter(state_dict.values())).dtype
                        else:
                            one_state_dict = load_state_dict(resolved_archive_file)
                            torch_dtype = next(iter(one_state_dict.values())).dtype
                            del one_state_dict  # free CPU memory
1909
1910
1911
1912
1913
1914
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

1915
1916
1917
1918
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
                loaded_state_dict_keys = [k for k in state_dict.keys()]
1919
            if low_cpu_mem_usage:
1920
                state_dict = None
1921

1922
1923
        config.name_or_path = pretrained_model_name_or_path

1924
        # Instantiate model.
1925
1926
1927
1928
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1929
1930
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1931
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1932
1933
                with no_init_weights(_enable=_fast_init):
                    model = cls(config, *model_args, **model_kwargs)
1934
        else:
1935
1936
            with no_init_weights(_enable=_fast_init):
                model = cls(config, *model_args, **model_kwargs)
1937
1938

        if from_tf:
1939
            if resolved_archive_file.endswith(".index"):
1940
1941
1942
1943
1944
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1945
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1946

1947
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1948
                except ImportError:
1949
1950
1951
1952
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1953
                    raise
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see "
                    "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions."
                )
                raise
1965
        elif from_pt:
1966

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

            model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
            )
1982

1983
1984
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1985

1986
        # Set model in evaluation mode to deactivate DropOut modules by default
1987
1988
        model.eval()

thomwolf's avatar
thomwolf committed
1989
        if output_loading_info:
1990
1991
1992
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
1993
                "mismatched_keys": mismatched_keys,
1994
1995
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1996
1997
            return model, loading_info

1998
1999
        return model

2000
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
2001
2002
2003
2004
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
2005
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
2006
2007
2008
2009
2010
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
2011
        low_cpu_mem_usage=False,
2012
    ):
2013
        # Retrieve missing & unexpected_keys
2014
2015
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
2016
2017
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
2018
2019
2020
2021
2022
2023
2024
2025
2026
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

        loaded_keys = [_fix_key(key) for key in loaded_keys]

2027
2028
2029
2030
2031
2032
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
2033
2034
2035

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
2036
2037
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
2038

2039
        if remove_prefix_from_model:
2040
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(prefix)]
2041
            expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
2042
        elif add_prefix_to_model:
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

2058
2059
        if _fast_init:
            # retrieve unintialized modules and initialize
2060
            uninitialized_modules = model.retrieve_modules_from_names(
2061
                missing_keys, add_prefix=add_prefix_to_model, remove_prefix=remove_prefix_from_model
2062
            )
2063
            for module in uninitialized_modules:
2064
2065
                model._init_weights(module)

2066
2067
2068
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
2069
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
2070
            start_prefix = cls.base_model_prefix + "."
2071
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
2072
            model_to_load = getattr(model, cls.base_model_prefix)
2073
2074
            if any(key in expected_keys_not_prefixed for key in loaded_keys):
                raise ValueError(
2075
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
2076
2077
                    "properly saved?"
                )
2078

2079
2080
2081
2082
2083
2084
2085
2086
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
2106
2107
            return mismatched_keys

2108
2109
2110
2111
        if low_cpu_mem_usage:
            model_state_dict = None  # free references to model's params to allow memory freeing
            _move_model_to_meta(model, loaded_keys, start_prefix)

2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                loaded_keys,
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2122
2123
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
        else:
2124
2125
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
2126
2127
2128
2129
2130
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
2131
            mismatched_keys = []
Sylvain Gugger's avatar
Sylvain Gugger committed
2132
2133
            for shard_file in resolved_archive_file:
                state_dict = load_state_dict(shard_file)
2134
2135
2136
2137

                if low_cpu_mem_usage:
                    model_state_dict = model.state_dict()

Sylvain Gugger's avatar
Sylvain Gugger committed
2138
2139
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
2140
2141
2142
2143
2144
2145
2146
2147
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
                    loaded_keys,
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
2148
2149
2150
2151
2152
2153
2154

                if low_cpu_mem_usage:
                    error_msgs += _load_state_dict_into_meta_model(
                        model_to_load, state_dict, loaded_keys, start_prefix
                    )
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
2155

2156
2157
2158
2159
                # force memory release
                del state_dict
                gc.collect()

2160
2161
2162
2163
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
2181
        elif len(mismatched_keys) == 0:
2182
2183
2184
2185
2186
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
2199

2200
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
2201
2202
2203
2204

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
2205
2206
2207
2208
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
        module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()]))

2209
2210
2211
2212
2213
2214
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
                name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
2215
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
2216
2217
2218
2219
2220
2221

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

2222
    @staticmethod
2223
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
2224
2225
2226
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

2227
        Before you call it do:
2228

2229
        1. save which state_dict keys are available
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

2241
2242
2243
2244
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
2245

2246
2247
2248
2249
2250
2251
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2252
2253
2254
2255
2256
2257
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

Sylvain Gugger's avatar
Sylvain Gugger committed
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
    def push_to_hub(
        self,
        repo_path_or_name: Optional[str] = None,
        repo_url: Optional[str] = None,
        use_temp_dir: bool = False,
        commit_message: str = "add model",
        organization: Optional[str] = None,
        private: Optional[bool] = None,
        use_auth_token: Optional[Union[bool, str]] = None,
        max_shard_size: Union[int, str] = "10GB",
        **model_card_kwargs
    ) -> str:
        """
        Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.
thomwolf's avatar
thomwolf committed
2286

Sylvain Gugger's avatar
Sylvain Gugger committed
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
        Parameters:
            repo_path_or_name (`str`, *optional*):
                Can either be a repository name for your model in the Hub or a path to a local folder (in which case
                the repository will have the name of that local folder). If not specified, will default to the name
                given by `repo_url` and a local directory with that name will be created.
            repo_url (`str`, *optional*):
                Specify this in case you want to push to an existing repository in the hub. If unspecified, a new
                repository will be created in your namespace (unless you specify an `organization`) with `repo_name`.
            use_temp_dir (`bool`, *optional*, defaults to `False`):
                Whether or not to clone the distant repo in a temporary directory or in `repo_path_or_name` inside the
                current working directory. This will slow things down if you are making changes in an existing repo
                since you will need to clone the repo before every push.
            commit_message (`str`, *optional*, defaults to `"add model"`):
                Message to commit while pushing.
            organization (`str`, *optional*):
                Organization in which you want to push your {object} (you must be a member of this organization).
            private (`bool`, *optional*):
                Whether or not the repository created should be private (requires a paying subscription).
            use_auth_token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`). Will default to `True` if
                `repo_url` is not specified.
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

        Returns:
            `str`: The url of the commit of your {object} in the given repository.

        Examples:

        ```python
        from transformers import AutoModel

        model = AutoModel.from_pretrained("bert-base-cased")

        # Push the model to your namespace with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert")

        # Push the model to your namespace with the name "my-finetuned-bert" with no local clone.
        model.push_to_hub("my-finetuned-bert", use_temp_dir=True)

        # Push the model to an organization with the name "my-finetuned-bert" and have a local clone in the
        # *my-finetuned-bert* folder.
        model.push_to_hub("my-finetuned-bert", organization="huggingface")

        # Make a change to an existing repo that has been cloned locally in *my-finetuned-bert*.
        model.push_to_hub("my-finetuned-bert", repo_url="https://huggingface.co/sgugger/my-finetuned-bert")
        ```
        """
        if use_temp_dir:
            # Make sure we use the right `repo_name` for the `repo_url` before replacing it.
            if repo_url is None:
                if use_auth_token is None:
                    use_auth_token = True
                repo_name = Path(repo_path_or_name).name
                repo_url = self._get_repo_url_from_name(
                    repo_name, organization=organization, private=private, use_auth_token=use_auth_token
                )
            repo_path_or_name = tempfile.mkdtemp()

        # Create or clone the repo. If the repo is already cloned, this just retrieves the path to the repo.
        repo = self._create_or_get_repo(
            repo_path_or_name=repo_path_or_name,
            repo_url=repo_url,
            organization=organization,
            private=private,
            use_auth_token=use_auth_token,
        )
        # Save the files in the cloned repo
        self.save_pretrained(repo_path_or_name, max_shard_size=max_shard_size)

        # Commit and push!
        url = self._push_to_hub(repo, commit_message=commit_message)

        # Clean up! Clean up! Everybody everywhere!
        if use_temp_dir:
            shutil.rmtree(repo_path_or_name)

        return url
2375
2376


thomwolf's avatar
thomwolf committed
2377
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2378
2379
    """
    Compute SQuAD start logits from sequence hidden states.
2380

Sylvain Gugger's avatar
Sylvain Gugger committed
2381
    Args:
2382
2383
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2384
2385
2386
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2387
        super().__init__()
thomwolf's avatar
thomwolf committed
2388
2389
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2390
2391
2392
2393
2394
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
2395
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2396
                The final hidden states of the model.
2397
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2398
2399
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2400
2401

        Returns:
2402
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
2403
        """
thomwolf's avatar
thomwolf committed
2404
2405
2406
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2407
            if get_parameter_dtype(self) == torch.float16:
2408
2409
2410
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2411
2412
2413
2414
2415
2416

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2417
    Compute SQuAD end logits from sequence hidden states.
2418

Sylvain Gugger's avatar
Sylvain Gugger committed
2419
    Args:
2420
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2421
2422
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
2423
2424
2425
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2426
        super().__init__()
thomwolf's avatar
thomwolf committed
2427
2428
2429
2430
2431
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2432
2433
2434
2435
2436
2437
2438
2439
2440
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
2441
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2442
                The final hidden states of the model.
2443
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2444
                The hidden states of the first tokens for the labeled span.
2445
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2446
                The position of the first token for the labeled span.
2447
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2448
2449
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2450

2451
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2452

Stas Bekman's avatar
Stas Bekman committed
2453
2454
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
2455
2456

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2457
2458

        Returns:
2459
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
2460
        """
2461
2462
2463
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2464
        if start_positions is not None:
2465
            slen, hsz = hidden_states.shape[-2:]
2466
2467
2468
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
2469
2470
2471
2472
2473
2474
2475

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2476
            if get_parameter_dtype(self) == torch.float16:
2477
2478
2479
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2480
2481
2482
2483
2484

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2485
2486
2487
2488
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
2489
2490
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2491
    """
2492

thomwolf's avatar
thomwolf committed
2493
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2494
        super().__init__()
thomwolf's avatar
thomwolf committed
2495
2496
2497
2498
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
2499
2500
2501
2502
2503
2504
2505
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
2506
2507
        """
        Args:
2508
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2509
                The final hidden states of the model.
2510
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2511
                The hidden states of the first tokens for the labeled span.
2512
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2513
                The position of the first token for the labeled span.
2514
2515
2516
2517
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2518

Stas Bekman's avatar
Stas Bekman committed
2519
2520
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2521

2522
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2523
2524

        Returns:
2525
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
2526
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2527
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
2528
        hsz = hidden_states.shape[-1]
2529
2530
2531
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2532
        if start_positions is not None:
2533
2534
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2535
2536

        if cls_index is not None:
2537
2538
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2539
        else:
2540
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2541
2542
2543
2544
2545
2546
2547
2548

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


2549
2550
2551
@dataclass
class SquadHeadOutput(ModelOutput):
    """
2552
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
2553
2554

    Args:
2555
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
2556
2557
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
2558
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2559
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
2560
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2561
            Indices for the top config.start_n_top start token possibilities (beam-search).
2562
2563
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
2564
            (beam-search).
2565
2566
2567
2568
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
2580
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2581
2582
    r"""
    A SQuAD head inspired by XLNet.
2583

Sylvain Gugger's avatar
Sylvain Gugger committed
2584
    Args:
2585
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2586
2587
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
2588
    """
2589

thomwolf's avatar
thomwolf committed
2590
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2591
        super().__init__()
thomwolf's avatar
thomwolf committed
2592
2593
2594
2595
2596
2597
2598
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
2599
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
2600
    def forward(
2601
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
2602
2603
2604
2605
2606
2607
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
2608
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
2609
2610
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
2611
        Args:
2612
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
2613
                Final hidden states of the model on the sequence tokens.
2614
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2615
                Positions of the first token for the labeled span.
2616
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2617
                Positions of the last token for the labeled span.
2618
2619
2620
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2621
                Whether the question has a possible answer in the paragraph or not.
2622
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2623
2624
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
2625
            return_dict (`bool`, *optional*, defaults to `False`):
2626
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
2627

Lysandre's avatar
Lysandre committed
2628
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2629
        """
thomwolf's avatar
thomwolf committed
2630
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
2654

2655
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
2656
2657
2658
2659

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
2660
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
2672
2673
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
2674
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
2675

2676
2677
2678
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
2679
2680
2681
2682
2683
2684
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

2685
            if not return_dict:
2686
2687
2688
2689
2690
2691
2692
2693
2694
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
2695
2696
2697


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2698
2699
2700
2701
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
2702
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2703
2704
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
2705

2706
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
2707

2708
2709
2710
2711
2712
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
2713

2714
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
2715
2716
2717
2718
2719
2720
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
2721
    """
2722

2723
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2724
        super().__init__()
thomwolf's avatar
thomwolf committed
2725

2726
        self.summary_type = getattr(config, "summary_type", "last")
2727
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2728
2729
2730
2731
2732
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
2733
        self.summary = Identity()
2734
2735
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
2736
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
2737
2738
2739
2740
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

2741
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
2742
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
2743

thomwolf's avatar
thomwolf committed
2744
        self.first_dropout = Identity()
2745
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
2746
2747
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
2748
        self.last_dropout = Identity()
2749
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
2750
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
2751

Sylvain Gugger's avatar
Sylvain Gugger committed
2752
2753
2754
2755
2756
2757
2758
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
2759
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2760
                The hidden states of the last layer.
2761
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2762
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
2763
2764

        Returns:
2765
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
2766
        """
2767
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
2768
            output = hidden_states[:, -1]
2769
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
2770
            output = hidden_states[:, 0]
2771
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
2772
            output = hidden_states.mean(dim=1)
2773
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
2774
            if cls_index is None:
Lysandre's avatar
Lysandre committed
2775
2776
2777
2778
2779
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
2780
            else:
thomwolf's avatar
thomwolf committed
2781
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
2782
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
2783
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
2784
2785
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
2786
2787
            raise NotImplementedError

2788
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
2789
2790
        output = self.summary(output)
        output = self.activation(output)
2791
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
2792
2793
2794
2795

        return output


2796
def unwrap_model(model: nn.Module) -> nn.Module:
2797
2798
2799
2800
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
2801
        model (`torch.nn.Module`): The model to unwrap.
2802
2803
2804
2805
2806
2807
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model