run_glue.py 23 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25
26

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
27
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
import transformers
30
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
34
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
35
    EvalPrediction,
36
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
38
    Trainer,
39
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
41
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
44
from transformers.utils import check_min_version
Sylvain Gugger's avatar
Sylvain Gugger committed
45

Aymeric Augustin's avatar
Aymeric Augustin committed
46

47
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
48
check_min_version("4.6.0.dev0")
49

Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
52
53
54
55
56
57
58
59
60
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
61
62
63

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
64

Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
117
118
119
120
121
122
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
123
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127
128
129
130
131
132

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
        elif self.train_file is None or self.validation_file is None:
            raise ValueError("Need either a GLUE task or a training/validation file.")
        else:
133
134
135
136
137
138
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
139
140


141
142
143
144
145
146
147
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
148
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
149
    )
150
151
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
152
    )
153
154
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
155
    )
156
    cache_dir: Optional[str] = field(
157
158
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
159
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
163
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
164
165
166
167
168
169
170
171
172
173
174
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
175
176


177
def main():
Julien Chaumond's avatar
Julien Chaumond committed
178
179
180
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
181

182
183
184
185
186
187
188
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
thomwolf's avatar
thomwolf committed
204

thomwolf's avatar
thomwolf committed
205
    # Setup logging
206
207
208
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
209
        handlers=[logging.StreamHandler(sys.stdout)],
210
    )
211
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213

    # Log on each process the small summary:
214
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
215
216
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
217
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
218
219
220
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
221
222
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
223
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
224

Sylvain Gugger's avatar
Sylvain Gugger committed
225
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
226
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
227

Sylvain Gugger's avatar
Sylvain Gugger committed
228
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
229
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
233
234
235
236
237
238
239
240
241
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
242
        datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
243
    else:
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
266
            datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir)
267
268
        else:
            # Loading a dataset from local json files
269
            datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
292
293

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
294
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
295
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
296
    # download model & vocab.
297
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
298
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
299
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
300
301
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
302
303
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
304
    )
305
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
306
307
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
308
        use_fast=model_args.use_fast_tokenizer,
309
310
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
311
    )
312
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
313
314
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
315
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
316
        cache_dir=model_args.cache_dir,
317
318
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
319
    )
thomwolf's avatar
thomwolf committed
320

Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
341

Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
344
345
346
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
347
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
348
349
350
351
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
352
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
353
        else:
354
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
355
356
357
358
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
359
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
360
        label_to_id = {v: i for i, v in enumerate(label_list)}
361

362
    if data_args.max_seq_length > tokenizer.model_max_length:
363
        logger.warning(
364
365
366
367
368
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
372
373
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
374
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
378
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
379
380
        return result

381
    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
382
383
384
385
386
387
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
388

389
390
391
392
393
394
395
396
397
398
    if training_args.do_eval:
        if "validation" not in datasets and "validation_matched" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in datasets and "test_matched" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
Sylvain Gugger's avatar
Sylvain Gugger committed
399
        test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]
400
401
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403

    # Log a few random samples from the training set:
404
405
406
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
    # compute_metrics

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
428

429
430
431
432
433
434
435
436
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
437
438
439
440
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
441
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
442
443
444
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
445
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
446
    )
thomwolf's avatar
thomwolf committed
447

thomwolf's avatar
thomwolf committed
448
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
449
    if training_args.do_train:
450
        checkpoint = None
451
        if last_checkpoint is not None:
452
            checkpoint = last_checkpoint
453
        elif os.path.isdir(model_args.model_name_or_path):
454
455
456
457
458
            # Check the config from that potential checkpoint has the right number of labels before using it as a
            # checkpoint.
            if AutoConfig.from_pretrained(model_args.model_name_or_path).num_labels == num_labels:
                checkpoint = model_args.model_name_or_path

459
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
460
        metrics = train_result.metrics
461
462
463
464
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
465

Sylvain Gugger's avatar
Sylvain Gugger committed
466
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
467

468
469
470
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
471

thomwolf's avatar
thomwolf committed
472
    # Evaluation
473
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
474
475
476
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
477
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
478
479
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
480
481
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
482

Sylvain Gugger's avatar
Sylvain Gugger committed
483
        for eval_dataset, task in zip(eval_datasets, tasks):
484
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
485

486
487
            max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
            metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
488

489
490
            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)
thomwolf's avatar
thomwolf committed
491

492
    if training_args.do_predict:
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495
496
        logger.info("*** Test ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
497
498
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
499
500
            tasks.append("mnli-mm")
            test_datasets.append(datasets["test_mismatched"])
501

Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
        for test_dataset, task in zip(test_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            test_dataset.remove_columns_("label")
505
            predictions = trainer.predict(test_dataset=test_dataset).predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
506
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
507

Sylvain Gugger's avatar
Sylvain Gugger committed
508
509
            output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt")
            if trainer.is_world_process_zero():
510
                with open(output_test_file, "w") as writer:
Sylvain Gugger's avatar
Sylvain Gugger committed
511
                    logger.info(f"***** Test results {task} *****")
512
513
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
514
515
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
516
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
517
518
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
519
520


Lysandre Debut's avatar
Lysandre Debut committed
521
522
523
524
525
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
526
527
if __name__ == "__main__":
    main()