run_glue.py 20.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
15
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
16
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
17
18
19

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import random
21
import sys
22
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
23
from typing import Optional
thomwolf's avatar
thomwolf committed
24
25

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
26
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
import transformers
29
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
32
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
33
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
34
    EvalPrediction,
35
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
37
    Trainer,
38
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
40
    set_seed,
41
)
42
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Sylvain Gugger's avatar
Sylvain Gugger committed
43

Aymeric Augustin's avatar
Aymeric Augustin committed
44

Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
49
50
51
52
53
54
55
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
56
57
58

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
59

Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
97
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
98
99
100
101
102
103
104
105
106

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
        elif self.train_file is None or self.validation_file is None:
            raise ValueError("Need either a GLUE task or a training/validation file.")
        else:
107
108
109
110
111
112
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114


115
116
117
118
119
120
121
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
122
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
123
    )
124
125
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
126
    )
127
128
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
129
    )
130
    cache_dir: Optional[str] = field(
131
132
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
133
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
138
139
140
141
142
143
144
145
146
147
148
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
149
150


151
def main():
Julien Chaumond's avatar
Julien Chaumond committed
152
153
154
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
155

156
157
158
159
160
161
162
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
thomwolf's avatar
thomwolf committed
178

thomwolf's avatar
thomwolf committed
179
    # Setup logging
180
181
182
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
183
        handlers=[logging.StreamHandler(sys.stdout)],
184
    )
185
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
186
187

    # Log on each process the small summary:
188
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
191
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
195
196
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
197
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
198

Sylvain Gugger's avatar
Sylvain Gugger committed
199
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
200
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
201

Sylvain Gugger's avatar
Sylvain Gugger committed
202
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
203
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset("glue", data_args.task_name)
    else:
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            datasets = load_dataset("csv", data_files=data_files)
        else:
            # Loading a dataset from local json files
            datasets = load_dataset("json", data_files=data_files)
Sylvain Gugger's avatar
Sylvain Gugger committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
266
267

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
268
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
269
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
270
    # download model & vocab.
271
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
272
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
273
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
274
275
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
276
277
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
278
    )
279
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
280
281
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
282
        use_fast=model_args.use_fast_tokenizer,
283
284
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
285
    )
286
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
287
288
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
289
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
290
        cache_dir=model_args.cache_dir,
291
292
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
293
    )
thomwolf's avatar
thomwolf committed
294

Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
315

Sylvain Gugger's avatar
Sylvain Gugger committed
316
317
318
319
320
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
321
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
324
325
326
327
328
329
330
331
332
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
        else:
            logger.warn(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
333
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
334
        label_to_id = {v: i for i, v in enumerate(label_list)}
335

Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
339
340
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
341
        result = tokenizer(*args, padding=padding, max_length=data_args.max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
342
343
344
345
346
347
348
349
350
351

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
            result["label"] = [label_to_id[l] for l in examples["label"]]
        return result

    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)

    train_dataset = datasets["train"]
    eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
352
    if data_args.task_name is not None or data_args.test_file is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
    # compute_metrics

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
379

380
381
382
383
384
385
386
387
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
388
389
390
391
392
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
396
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
397
    )
thomwolf's avatar
thomwolf committed
398

thomwolf's avatar
thomwolf committed
399
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
400
    if training_args.do_train:
401
402
403
404
405
406
407
        if last_checkpoint is not None:
            model_path = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            model_path = model_args.model_name_or_path
        else:
            model_path = None
        train_result = trainer.train(model_path=model_path)
408
409
        metrics = train_result.metrics

Sylvain Gugger's avatar
Sylvain Gugger committed
410
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
411

412
413
414
415
416
417
418
419
420
421
422
        output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
        if trainer.is_world_process_zero():
            with open(output_train_file, "w") as writer:
                logger.info("***** Train results *****")
                for key, value in sorted(metrics.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))

thomwolf's avatar
thomwolf committed
423
    # Evaluation
424
    eval_results = {}
425
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
426
427
428
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
429
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
430
431
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
432
433
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
434

Sylvain Gugger's avatar
Sylvain Gugger committed
435
        for eval_dataset, task in zip(eval_datasets, tasks):
436
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
437

Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
            output_eval_file = os.path.join(training_args.output_dir, f"eval_results_{task}.txt")
            if trainer.is_world_process_zero():
440
                with open(output_eval_file, "w") as writer:
Sylvain Gugger's avatar
Sylvain Gugger committed
441
                    logger.info(f"***** Eval results {task} *****")
442
                    for key, value in sorted(eval_result.items()):
Sylvain Gugger's avatar
Sylvain Gugger committed
443
444
                        logger.info(f"  {key} = {value}")
                        writer.write(f"{key} = {value}\n")
445

446
            eval_results.update(eval_result)
thomwolf's avatar
thomwolf committed
447

448
    if training_args.do_predict:
Sylvain Gugger's avatar
Sylvain Gugger committed
449
450
451
452
        logger.info("*** Test ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
453
454
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
455
456
            tasks.append("mnli-mm")
            test_datasets.append(datasets["test_mismatched"])
457

Sylvain Gugger's avatar
Sylvain Gugger committed
458
459
460
        for test_dataset, task in zip(test_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            test_dataset.remove_columns_("label")
461
            predictions = trainer.predict(test_dataset=test_dataset).predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
462
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
463

Sylvain Gugger's avatar
Sylvain Gugger committed
464
465
            output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt")
            if trainer.is_world_process_zero():
466
                with open(output_test_file, "w") as writer:
Sylvain Gugger's avatar
Sylvain Gugger committed
467
                    logger.info(f"***** Test results {task} *****")
468
469
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
470
471
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
472
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
473
474
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
475
    return eval_results
thomwolf's avatar
thomwolf committed
476
477


Lysandre Debut's avatar
Lysandre Debut committed
478
479
480
481
482
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
483
484
if __name__ == "__main__":
    main()