run_glue.py 21.3 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25
26

import numpy as np
Sylvain Gugger's avatar
Sylvain Gugger committed
27
from datasets import load_dataset, load_metric
thomwolf's avatar
thomwolf committed
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
import transformers
30
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
34
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
35
    EvalPrediction,
36
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
38
    Trainer,
39
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
41
    set_seed,
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Sylvain Gugger's avatar
Sylvain Gugger committed
44

Aymeric Augustin's avatar
Aymeric Augustin committed
45

Sylvain Gugger's avatar
Sylvain Gugger committed
46
47
48
49
50
51
52
53
54
55
56
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
57
58
59

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
60

Sylvain Gugger's avatar
Sylvain Gugger committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
98
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
102
103
104
105
106
107

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
        elif self.train_file is None or self.validation_file is None:
            raise ValueError("Need either a GLUE task or a training/validation file.")
        else:
108
109
110
111
112
113
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115


116
117
118
119
120
121
122
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
123
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
124
    )
125
126
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
127
    )
128
129
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
130
    )
131
    cache_dir: Optional[str] = field(
132
133
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
134
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
138
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
139
140
141
142
143
144
145
146
147
148
149
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
150
151


152
def main():
Julien Chaumond's avatar
Julien Chaumond committed
153
154
155
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
156

157
158
159
160
161
162
163
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
thomwolf committed
180
    # Setup logging
181
182
183
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
184
        handlers=[logging.StreamHandler(sys.stdout)],
185
    )
186
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
Sylvain Gugger's avatar
Sylvain Gugger committed
187
188

    # Log on each process the small summary:
189
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
192
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
196
197
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
198
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
199

Sylvain Gugger's avatar
Sylvain Gugger committed
200
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
201
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
202

Sylvain Gugger's avatar
Sylvain Gugger committed
203
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
204
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset("glue", data_args.task_name)
    else:
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            datasets = load_dataset("csv", data_files=data_files)
        else:
            # Loading a dataset from local json files
            datasets = load_dataset("json", data_files=data_files)
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
267
268

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
269
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
270
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
271
    # download model & vocab.
272
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
273
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
274
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
275
276
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
277
278
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
279
    )
280
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
281
282
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
283
        use_fast=model_args.use_fast_tokenizer,
284
285
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
286
    )
287
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
288
289
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
290
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
291
        cache_dir=model_args.cache_dir,
292
293
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
294
    )
thomwolf's avatar
thomwolf committed
295

Sylvain Gugger's avatar
Sylvain Gugger committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
316

Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
320
321
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
322
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
323
324
325
326
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
327
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
330
331
332
333
        else:
            logger.warn(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
334
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
335
        label_to_id = {v: i for i, v in enumerate(label_list)}
336

337
338
339
340
341
342
343
    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warn(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
346
347
348
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
349
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
350
351
352

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
353
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
356
357
358
359
        return result

    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)

    train_dataset = datasets["train"]
    eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
360
    if data_args.task_name is not None or data_args.test_file is not None:
Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
    # compute_metrics

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
        else:
            return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
thomwolf's avatar
thomwolf committed
387

388
389
390
391
392
393
394
395
    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
396
397
398
399
400
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
Sylvain Gugger's avatar
Sylvain Gugger committed
401
402
403
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
404
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
405
    )
thomwolf's avatar
thomwolf committed
406

thomwolf's avatar
thomwolf committed
407
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
408
    if training_args.do_train:
409
        if last_checkpoint is not None:
410
            checkpoint = last_checkpoint
411
        elif os.path.isdir(model_args.model_name_or_path):
412
            checkpoint = model_args.model_name_or_path
413
        else:
414
415
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
416
417
        metrics = train_result.metrics

Sylvain Gugger's avatar
Sylvain Gugger committed
418
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
419

420
421
422
423
424
425
426
427
428
429
430
        output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
        if trainer.is_world_process_zero():
            with open(output_train_file, "w") as writer:
                logger.info("***** Train results *****")
                for key, value in sorted(metrics.items()):
                    logger.info(f"  {key} = {value}")
                    writer.write(f"{key} = {value}\n")

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))

thomwolf's avatar
thomwolf committed
431
    # Evaluation
432
    eval_results = {}
433
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
434
435
436
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
437
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
438
439
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
440
441
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])
Julien Chaumond's avatar
Julien Chaumond committed
442

Sylvain Gugger's avatar
Sylvain Gugger committed
443
        for eval_dataset, task in zip(eval_datasets, tasks):
444
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
445

Sylvain Gugger's avatar
Sylvain Gugger committed
446
447
            output_eval_file = os.path.join(training_args.output_dir, f"eval_results_{task}.txt")
            if trainer.is_world_process_zero():
448
                with open(output_eval_file, "w") as writer:
Sylvain Gugger's avatar
Sylvain Gugger committed
449
                    logger.info(f"***** Eval results {task} *****")
450
                    for key, value in sorted(eval_result.items()):
Sylvain Gugger's avatar
Sylvain Gugger committed
451
452
                        logger.info(f"  {key} = {value}")
                        writer.write(f"{key} = {value}\n")
453

454
            eval_results.update(eval_result)
thomwolf's avatar
thomwolf committed
455

456
    if training_args.do_predict:
Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
459
460
        logger.info("*** Test ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
461
462
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
            tasks.append("mnli-mm")
            test_datasets.append(datasets["test_mismatched"])
465

Sylvain Gugger's avatar
Sylvain Gugger committed
466
467
468
        for test_dataset, task in zip(test_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            test_dataset.remove_columns_("label")
469
            predictions = trainer.predict(test_dataset=test_dataset).predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
470
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
471

Sylvain Gugger's avatar
Sylvain Gugger committed
472
473
            output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt")
            if trainer.is_world_process_zero():
474
                with open(output_test_file, "w") as writer:
Sylvain Gugger's avatar
Sylvain Gugger committed
475
                    logger.info(f"***** Test results {task} *****")
476
477
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
478
479
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
480
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
481
482
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
483
    return eval_results
thomwolf's avatar
thomwolf committed
484
485


Lysandre Debut's avatar
Lysandre Debut committed
486
487
488
489
490
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
491
492
if __name__ == "__main__":
    main()