test_modeling_flax_common.py 58.3 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import inspect
Arthur's avatar
Arthur committed
17
import json
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import random
19
import tempfile
20
import unittest
21
from typing import List, Tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
22
23

import numpy as np
24
from huggingface_hub import HfFolder, delete_repo, set_access_token
25
from requests.exceptions import HTTPError
26
27

import transformers
28
from transformers import BertConfig, is_flax_available, is_torch_available
Daniel Stancl's avatar
Daniel Stancl committed
29
from transformers.models.auto import get_values
30
from transformers.testing_utils import (
31
    TOKEN,
32
33
34
35
36
37
38
    USER,
    CaptureLogger,
    is_pt_flax_cross_test,
    is_staging_test,
    require_flax,
    torch_device,
)
39
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging
40
from transformers.utils.generic import ModelOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
43
44
45
46
47


if is_flax_available():
    import os

    import jax
    import jax.numpy as jnp
48
    from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
Arthur's avatar
Arthur committed
49
    from flax.serialization import from_bytes
Suraj Patil's avatar
Suraj Patil committed
50
    from flax.traverse_util import flatten_dict, unflatten_dict
51

52
53
54
55
    from transformers import (
        FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        FLAX_MODEL_MAPPING,
56
        FlaxAutoModel,
57
58
59
        FlaxAutoModelForSequenceClassification,
        FlaxBertModel,
    )
60
61
62
63
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )
Arthur's avatar
Arthur committed
64
    from transformers.modeling_flax_utils import FLAX_WEIGHTS_INDEX_NAME, FLAX_WEIGHTS_NAME
Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
67
68
69
70
71

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8

if is_torch_available():
    import torch


Daniel Stancl's avatar
Daniel Stancl committed
72
73
74
75
76
77
78
79
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key or "initializer_factor" in key:
            setattr(configs_no_init, key, 1e-10)
    return configs_no_init


Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def ids_tensor(shape, vocab_size, rng=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = np.array(values, dtype=jnp.int32).reshape(shape)

    return output


Suraj Patil's avatar
Suraj Patil committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return np.array(values, dtype=jnp.float32).reshape(shape)


Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
118
119
120
def random_attention_mask(shape, rng=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def get_params(params, from_head_prefix=None):
    """Function extracts relevant parameters into flatten dict from model params,
    appends batch normalization statistics if present"""

    # If Both parameters and batch normalization statistics are present
    if "batch_stats" in params:
        # Extract only parameters for the specified head prefix (if specified) and add batch statistics
        if from_head_prefix is not None:
            extracted_params = flatten_dict(unfreeze(params["params"][from_head_prefix]))
            extracted_params.update(flatten_dict(params["batch_stats"][from_head_prefix]))
        else:
            extracted_params = flatten_dict(unfreeze(params["params"]))
            extracted_params.update(flatten_dict(params["batch_stats"]))

    # Only parameters are present
    else:
        if from_head_prefix is not None:
            extracted_params = flatten_dict(unfreeze(params[from_head_prefix]))
        else:
            extracted_params = flatten_dict(unfreeze(params))

    return extracted_params


145
@require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
class FlaxModelTesterMixin:
    model_tester = None
    all_model_classes = ()
149
    test_mismatched_shapes = True
Daniel Stancl's avatar
Daniel Stancl committed
150
    is_encoder_decoder = False
151
    test_head_masking = False
152
    has_attentions = True
Sylvain Gugger's avatar
Sylvain Gugger committed
153

154
155
156
157
158
159
160
    def _prepare_for_class(self, inputs_dict, model_class):
        inputs_dict = copy.deepcopy(inputs_dict)

        # hack for now until we have AutoModel classes
        if "ForMultipleChoice" in model_class.__name__:
            inputs_dict = {
                k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1]))
161
                if isinstance(v, (jnp.ndarray, np.ndarray))
162
163
                else v
                for k, v in inputs_dict.items()
164
165
166
167
            }

        return inputs_dict

Sylvain Gugger's avatar
Sylvain Gugger committed
168
    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
169
        diff = np.abs((a - b)).max()
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
186
                    self.assert_almost_equals(jnp.nan_to_num(tuple_object), jnp.nan_to_num(dict_object), 1e-5)
187

188
            recursive_check(tuple_output, dict_output)
189
190
191
192
193
194
195
196
197
198
199
200

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

201
202
    # (Copied from tests.test_modeling_common.ModelTesterMixin.check_pt_flax_outputs)
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
203
204
205
206
207
208
209
210
211
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
252
            else:
253
254
255
256
257
258
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

259
        elif isinstance(fx_outputs, jnp.ndarray):
260
261
262
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
263
264
265
266
267

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

268
269
270
271
272
273
274
275
276
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

277
278
279
280
281
282
283
284
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

285
286
287
288
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
289
290
        else:
            raise ValueError(
291
292
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
293
294
            )

295
    @is_pt_flax_cross_test
296
    def test_equivalence_pt_to_flax(self):
297
298
        # It might be better to put this inside the for loop below (because we modify the config there).
        # But logically, it is fine.
Sylvain Gugger's avatar
Sylvain Gugger committed
299
300
301
302
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
303
304
                # Output all for aggressive testing
                config.output_hidden_states = True
305
                config.output_attentions = self.has_attentions
306

307
                # prepare inputs
308
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
309
                pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()}
310
311

                # load corresponding PyTorch class
Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

315
                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
316
317
318
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
319
                fx_model = model_class(config, dtype=jnp.float32)
320

321
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
322
                fx_model.params = fx_state
Sylvain Gugger's avatar
Sylvain Gugger committed
323

324
325
326
                # send pytorch model to the correct device
                pt_model.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
327
                with torch.no_grad():
328
329
330
331
332
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**prepared_inputs_dict)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
333

334
                self.assertEqual(fx_keys, pt_keys)
335
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
336

337
338
339
340
                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

341
342
343
344
345
346
                fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
347
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
348
349
350
351
352
353
354

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
355
356
                # Output all for aggressive testing
                config.output_hidden_states = True
357
                config.output_attentions = self.has_attentions
358

359
360
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
361
                pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()}
362
363
364
365
366
367

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
368
369
370
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
371
372
373
374
375
376
377
                fx_model = model_class(config, dtype=jnp.float32)

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

378
379
380
                # send pytorch model to the correct device
                pt_model.to(torch_device)

381
                with torch.no_grad():
382
383
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**prepared_inputs_dict)
384

385
386
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
Daniel Stancl's avatar
Daniel Stancl committed
387

388
                self.assertEqual(fx_keys, pt_keys)
389
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
390
391
392
393
394

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)

395
396
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
397
                pt_model_loaded.eval()
398

399
                with torch.no_grad():
400
401
402
403
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])
404

405
                self.assertEqual(fx_keys, pt_keys)
406
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
407
408

    def test_from_pretrained_save_pretrained(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410
411
412
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
413
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
414

415
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
416
                outputs = model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
417

418
                # verify that normal save_pretrained works as expected
419
420
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
421
422
423
424
425
426
427

                    # the config file (and the generation config file, if it can generate) should be saved
                    self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                    self.assertEqual(
                        model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                    )

428
429
                    model_loaded = model_class.from_pretrained(tmpdirname)

430
                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
431
432
433
434
435
436
437
438
439
440
                for output_loaded, output in zip(outputs_loaded, outputs):
                    self.assert_almost_equals(output_loaded, output, 1e-3)

                # verify that save_pretrained for distributed training
                # with `params=params` works as expected
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname, params=model.params)
                    model_loaded = model_class.from_pretrained(tmpdirname)

                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
441
                for output_loaded, output in zip(outputs_loaded, outputs):
442
                    self.assert_almost_equals(output_loaded, output, 1e-3)
443

444
445
446
447
448
449
450
451
452
    def test_save_load_from_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
453
            base_params = get_params(model.params)
454
455
456
457
458
459

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname)

460
                base_param_from_head = get_params(head_model.params, from_head_prefix=head_model.base_model_prefix)
461
462
463
464
465
466
467
468
469
470
471
472
473
474

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_to_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
475
            base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix)
476
477
478
479
480
481

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname)

482
                base_params = get_params(base_model.params)
483
484
485
486
487

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

488
489
490
491
492
493
494
495
496
497
    @is_pt_flax_cross_test
    def test_save_load_from_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
498
            base_params = get_params(model.params)
499
500
501
502
503
504
505
506
507
508
509
510

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, base_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                # save pt model
                pt_model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname, from_pt=True)

511
                base_param_from_head = get_params(head_model.params, from_head_prefix=head_model.base_model_prefix)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    @is_pt_flax_cross_test
    def test_save_load_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
527
            base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix)
528
529
530
531
532
533
534
535
536
537
538

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

539
                base_params = get_params(base_model.params)
540
541
542
543
544

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

545
546
547
548
549
550
551
552
553
554
555
    @is_pt_flax_cross_test
    def test_save_load_bf16_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            model.params = model.to_bf16(model.params)
556
            base_params_from_head = get_params(model.params, from_head_prefix=model.base_model_prefix)
557
558
559
560
561
562
563
564
565
566
567

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

568
                base_params = get_params(base_model.params)
569
570
571
572
573

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

574
575
576
577
578
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
579
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
580
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
581
582

                @jax.jit
Suraj Patil's avatar
Suraj Patil committed
583
                def model_jitted(input_ids, attention_mask=None, **kwargs):
584
                    return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
585
586

                with self.subTest("JIT Enabled"):
587
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
588
589
590

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
591
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
592
593
594
595

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)
596

597
598
599
600
601
602
603
604
605
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

Daniel Stancl's avatar
Daniel Stancl committed
606
607
608
609
610
611
612
613
614
615
616
            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
            else:
                expected_arg_names = ["input_ids", "attention_mask"]
                self.assertListEqual(arg_names[:2], expected_arg_names)
617

618
619
620
621
622
623
624
625
626
627
    def test_naming_convention(self):
        for model_class in self.all_model_classes:
            model_class_name = model_class.__name__
            module_class_name = (
                model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module"
            )
            bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name])
            module_cls = getattr(bert_modeling_flax_module, module_class_name)

            self.assertIsNotNone(module_cls)
628
629
630
631
632
633

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
634
            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
635

Daniel Stancl's avatar
Daniel Stancl committed
636
637
638
639
640
641
642
643
644
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
            else:
                seq_length = self.model_tester.seq_length
645
646
647
648
649
650

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

Daniel Stancl's avatar
Daniel Stancl committed
651
652
653
654
655
656
657
658
659
660
661
662
663
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

664
665
666
667
668
669
670
671
672
673
674
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)
675
676

    def test_attention_outputs(self):
677
678
679
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

680
681
682
683
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_length = getattr(self.model_tester, "seq_length", None)
Daniel Stancl's avatar
Daniel Stancl committed
684
685
686
687
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
688
689
690
691
692
693

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
694
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
695
696
697
698
699
700
701
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
702
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
703
704
705
706
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
707
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
708
709
710
            )
            out_len = len(outputs)

Daniel Stancl's avatar
Daniel Stancl committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
            if self.is_encoder_decoder:
                correct_outlen = 5

                # Question Answering model returns start_logits and end_logits
                if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )

                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

742
743
744
745
746
747
            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

Daniel Stancl's avatar
Daniel Stancl committed
748
749
750
751
752
753
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
754
755
756
757
758
759
760
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
761
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
762
            )
763

764
    def test_load_with_mismatched_shapes(self):
765
766
        if not self.test_mismatched_shapes:
            return
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
781
782
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(tmp_dir, vocab_size=10)
783
784
785
786
787
788
789
790
791
792
793

                    logger = logging.get_logger("transformers.modeling_flax_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs_dict)["logits"]
                    self.assertEqual(logits.shape[1], 42)

794
795
796
797
798
799
800
801
802
803
804
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

Suraj Patil's avatar
Suraj Patil committed
805
806
807
808
809
810
    def test_default_params_dtype(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # check if all params are still in float32 when dtype of computation is half-precision
            model = model_class(config, dtype=jnp.float16)
811
            types = jax.tree_util.tree_map(lambda x: x.dtype, model.params)
Suraj Patil's avatar
Suraj Patil committed
812
813
814
815
816
817
818
819
820
821
822
823
824
            types = flatten_dict(types)

            for name, type_ in types.items():
                self.assertEquals(type_, jnp.float32, msg=f"param {name} is not initialized in fp32.")

    def test_to_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to bf16
            params = model.to_bf16(model.params)
825
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
826
827
828
829
830
831
832
833
834
835
836
            # test if all params are in bf16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_bf16(model.params, mask)
837
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
            # test if all params are in bf16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

    def test_to_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16
            params = model.to_fp16(model.params)
853
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
854
855
856
857
858
859
860
861
862
863
864
            # test if all params are in fp16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_fp16(model.params, mask)
865
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
            # test if all params are in fp16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_to_fp32(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16 and back to fp32
            params = model.to_fp16(model.params)
            params = model.to_fp32(params)

            # test if all params are in fp32
884
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            # cast to fp16 and back to fp32 with mask
            params = model.to_fp16(model.params)
            params = model.to_fp32(params, mask)

            # test if all params are in fp32 except key
899
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, params))
Suraj Patil's avatar
Suraj Patil committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} should be in fp16.")
                else:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

    def test_save_load_in_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to fp16 and save
        params = model.to_fp16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
919
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params))
Suraj Patil's avatar
Suraj Patil committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_save_load_in_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to bf16 and save
        params = model.to_bf16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
936
            types = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype, model.params))
Suraj Patil's avatar
Suraj Patil committed
937
938
939
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

940
941
942
943
944
945
946
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "__call__"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    def test_headmasking(self):
        if not self.test_head_masking:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        def _prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
            if i == 0:
                return np.concatenate([np.zeros(1, dtype=jnp.int32), np.ones(attention_heads - 1, dtype=jnp.int32)])
            if i == num_hidden_layers - 1:
                return np.concatenate([np.zeros(attention_heads - 1, dtype=jnp.int32), np.ones(1, dtype=jnp.int32)])
            return np.ones(attention_heads, dtype=jnp.int32)

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            # Prepare head mask
            inputs["head_mask"] = np.stack(
                [
                    _prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ]
            )
            outputs = model(**inputs)

            def _check_attentions_validity(attentions):
                # Remove NaN
                for t in attentions:
                    # Check we don't have more than 25% nans (arbitrary)
                    self.assertLess(np.isnan(t).sum(), t.size / 4)
                attentions = [np.where(np.isnan(t), 0.0, t) for t in attentions]

                self.assertAlmostEqual(attentions[0][..., 0, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].sum(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(attentions[1][..., 0, :, :].sum(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].sum(), 0.0)

            if model.config.is_encoder_decoder:
                raise NotImplementedError("The test has not been implemented for encoder-decoder models yet.")
            else:
                _check_attentions_validity(outputs.attentions)

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    def test_no_automatic_init(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            model = model_class(config, _do_init=False)

            # Check that accesing parmas raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                params = model.params

            # Check if we params can be properly initialized when calling init_weights
            params = model.init_weights(model.key, model.input_shape)
            self.assertIsInstance(params, FrozenDict)
            # Check if all required parmas are initialized
            keys = set(flatten_dict(unfreeze(params)).keys())
            self.assertTrue(all(k in keys for k in model.required_params))
            # Check if the shapes match
            flat_params = flatten_dict(unfreeze(params))
            for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items():
                self.assertEqual(
                    v.shape,
                    flat_params[k].shape,
                    "Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape),
                )

            # Check that setting params raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                model.params = params

            # Check if we can do a forward pass
            inputs_dict["output_hidden_states"] = True
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            model(**inputs, params=params)

    def test_from_pretrained_with_no_automatic_init(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        def _assert_all_params_initialised(model, params):
            # Check if all required parmas are loaded
            keys = set(flatten_dict(unfreeze(params)).keys())
            self.assertTrue(all(k in keys for k in model.required_params))
            # Check if the shapes match
            flat_params = flatten_dict(unfreeze(params))
            for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items():
                self.assertEqual(
                    v.shape,
                    flat_params[k].shape,
                    "Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape),
                )

        for model_class in self.all_model_classes:
            # init the model
            model = model_class(config)

            # save the model in the temporary directory
            # load the saved model with _do_init=False
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model, params = model_class.from_pretrained(tmpdirname, _do_init=False)

            # Check that accesing parmas raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                params = model.params

            # Check if all required parmas are loaded
            _assert_all_params_initialised(model, params)

            # Check that setting params raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                model.params = params

            # Check if init_weights initializes missing keys from from_pretrained
            flat_params = flatten_dict(unfreeze(params))
            random_key = random.choice(list(flat_params.keys()))
            flat_params.pop(random_key)
            params = freeze(unflatten_dict(flat_params))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, params=params)
                model, params = model_class.from_pretrained(tmpdirname, _do_init=False)

                params = model.init_weights(model.key, model.input_shape, params=params)
                # Check if all required parmas are loaded
                _assert_all_params_initialised(model, params)

Arthur's avatar
Arthur committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    def test_checkpoint_sharding_from_hub(self):
        model = FlaxBertModel.from_pretrained("ArthurZ/flax-tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(ref_model.params).values()):
            assert np.allclose(np.array(p1), np.array(p2))

    def test_checkpoint_sharding_local(self):
        model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["150kB", "150kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".msgpack"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, FLAX_WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, FLAX_WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        with open(shard_file, "rb") as state_f:
                            state_file = from_bytes(FlaxBertModel, state_f.read())
                            self.assertEqual(len(state_file), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
1126
                shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".msgpack")}
Arthur's avatar
Arthur committed
1127
1128
1129
1130
1131
1132
1133
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = FlaxBertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(flatten_dict(model.params).values(), flatten_dict(new_model.params).values()):
                    self.assertTrue(np.allclose(np.array(p1), np.array(p2)))

Arthur's avatar
Arthur committed
1134
1135
1136
1137
1138
1139
1140
1141
    @is_pt_flax_cross_test
    def test_from_sharded_pt(self):
        model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True)
        ref_model = FlaxBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-fx-only")
        for key, ref_val in flatten_dict(ref_model.params).items():
            val = flatten_dict(model.params)[key]
            assert np.allclose(np.array(val), np.array(ref_val))

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
    def test_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # prepare inputs
            prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            remat_model = model_class(config)

            try:
                remat_model.enable_gradient_checkpointing()
            except NotImplementedError:
                continue

            outputs = model(**prepared_inputs_dict)
            remat_outputs = remat_model(**prepared_inputs_dict)

            # ensure that the dicts of outputs contain the same keys
            self.assertEqual(outputs.keys(), remat_outputs.keys())

            outputs = outputs.to_tuple()
            remat_outputs = remat_outputs.to_tuple()

            # ensure that the outputs remain precisely equal
            for output, remat_output in zip(outputs, remat_outputs):
                self.assertTrue((output == remat_output).all())

1169
1170
1171
1172
1173
1174

@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1175
1176
1177
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
1178
1179
1180
1181

    @classmethod
    def tearDownClass(cls):
        try:
1182
            delete_repo(token=cls._token, repo_id="test-model-flax")
1183
1184
1185
1186
        except HTTPError:
            pass

        try:
1187
            delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
1188
1189
1190
1191
1192
1193
1194
1195
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        model.push_to_hub("test-model-flax", use_auth_token=self._token)

        new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model-flax")

        # Push to hub via save_pretrained
1211
        with tempfile.TemporaryDirectory() as tmp_dir:
1212
            model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, use_auth_token=self._token)
1213

1214
        new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
1215

1216
1217
        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))
1218

1219
1220
1221
        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
1222
1223
1224
1225
1226
1227

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
        model.push_to_hub("valid_org/test-model-flax-org", use_auth_token=self._token)

        new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")

        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))

        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org")

        # Push to hub via save_pretrained
1243
1244
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
1245
                tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, use_auth_token=self._token
1246
1247
            )

1248
        new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
1249

1250
1251
        base_params = flatten_dict(unfreeze(model.params))
        new_params = flatten_dict(unfreeze(new_model.params))
1252

1253
1254
1255
        for key in base_params.keys():
            max_diff = (base_params[key] - new_params[key]).sum().item()
            self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320


def check_models_equal(model1, model2):
    models_are_equal = True
    flat_params_1 = flatten_dict(model1.params)
    flat_params_2 = flatten_dict(model2.params)
    for key in flat_params_1.keys():
        if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
            models_are_equal = False

    return models_are_equal


@require_flax
class FlaxModelUtilsTest(unittest.TestCase):
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
        model = FlaxBertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = FlaxBertModel.from_pretrained(tmp_dir)

            model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"

        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = FlaxBertModel.from_pretrained(model_id)

        model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)