test_modeling_flax_common.py 15.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
17
import random
18
import tempfile
19
from typing import List, Tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
20
21
22
23
24

import numpy as np

import transformers
from transformers import is_flax_available, is_torch_available
25
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
32


if is_flax_available():
    import os

    import jax
    import jax.numpy as jnp
33
    import jaxlib.xla_extension as jax_xla
34
35
36
37
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8

if is_torch_available():
    import torch


def ids_tensor(shape, vocab_size, rng=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = np.array(values, dtype=jnp.int32).reshape(shape)

    return output


Suraj Patil's avatar
Suraj Patil committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return np.array(values, dtype=jnp.float32).reshape(shape)


Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
81
82
83
84
85
def random_attention_mask(shape, rng=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


86
@require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
class FlaxModelTesterMixin:
    model_tester = None
    all_model_classes = ()

91
92
93
94
95
96
97
    def _prepare_for_class(self, inputs_dict, model_class):
        inputs_dict = copy.deepcopy(inputs_dict)

        # hack for now until we have AutoModel classes
        if "ForMultipleChoice" in model_class.__name__:
            inputs_dict = {
                k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1]))
98
                if isinstance(v, (jax_xla.DeviceArray, np.ndarray))
99
100
                else v
                for k, v in inputs_dict.items()
101
102
103
104
            }

        return inputs_dict

Sylvain Gugger's avatar
Sylvain Gugger committed
105
    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
106
        diff = np.abs((a - b)).max()
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
                    self.assert_almost_equals(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), 1e-5
                    )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

144
    @is_pt_flax_cross_test
145
    def test_equivalence_pt_to_flax(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
149
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
150
                # prepare inputs
151
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
152
153
154
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

158
                pt_model = pt_model_class(config).eval()
159
                fx_model = model_class(config, dtype=jnp.float32)
160

161
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
162
                fx_model.params = fx_state
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()
166

167
                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
170
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
Sylvain Gugger's avatar
Sylvain Gugger committed
171

172
173
174
175
                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

176
                fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple()
177
178
179
180
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
181
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                pt_model = pt_model_class(config).eval()
                fx_model = model_class(config, dtype=jnp.float32)

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

208
                fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
209
210
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
211
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
212
213
214
215
216
217
218
219
220
221
222
223

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
224
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)
225
226

    def test_from_pretrained_save_pretrained(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
230
231
232
            if model_class.__name__ != "FlaxBertModel":
                continue

Sylvain Gugger's avatar
Sylvain Gugger committed
233
            with self.subTest(model_class.__name__):
234
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
235

236
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
237
                outputs = model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
238

239
                # verify that normal save_pretrained works as expected
240
241
242
243
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_loaded = model_class.from_pretrained(tmpdirname)

244
                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
245
246
247
248
249
250
251
252
253
254
                for output_loaded, output in zip(outputs_loaded, outputs):
                    self.assert_almost_equals(output_loaded, output, 1e-3)

                # verify that save_pretrained for distributed training
                # with `params=params` works as expected
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname, params=model.params)
                    model_loaded = model_class.from_pretrained(tmpdirname)

                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
255
                for output_loaded, output in zip(outputs_loaded, outputs):
256
                    self.assert_almost_equals(output_loaded, output, 1e-3)
257
258
259
260
261
262

    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
263
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
264
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266

                @jax.jit
Suraj Patil's avatar
Suraj Patil committed
267
                def model_jitted(input_ids, attention_mask=None, **kwargs):
268
                    return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
269
270

                with self.subTest("JIT Enabled"):
271
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
272
273
274

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
275
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
276
277
278
279

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)
280

281
282
283
284
285
286
287
288
289
290
291
292
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_ids", "attention_mask"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

293
294
295
296
297
298
299
300
301
302
    def test_naming_convention(self):
        for model_class in self.all_model_classes:
            model_class_name = model_class.__name__
            module_class_name = (
                model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module"
            )
            bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name])
            module_cls = getattr(bert_modeling_flax_module, module_class_name)

            self.assertIsNotNone(module_cls)
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            hidden_states = outputs.hidden_states

            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_length = getattr(self.model_tester, "seq_length", None)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_length, seq_length],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_length, seq_length],
            )