test_modeling_flax_common.py 48.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import inspect
Sylvain Gugger's avatar
Sylvain Gugger committed
17
import random
18
import tempfile
19
import unittest
20
from typing import List, Tuple
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
23
24

import numpy as np

import transformers
25
from huggingface_hub import HfFolder, delete_repo, set_access_token
26
from requests.exceptions import HTTPError
27
from transformers import BertConfig, is_flax_available, is_torch_available
Daniel Stancl's avatar
Daniel Stancl committed
28
from transformers.models.auto import get_values
29
from transformers.testing_utils import (
30
    TOKEN,
31
32
33
34
35
36
37
    USER,
    CaptureLogger,
    is_pt_flax_cross_test,
    is_staging_test,
    require_flax,
    torch_device,
)
38
from transformers.utils import logging
39
from transformers.utils.generic import ModelOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
42
43
44
45
46


if is_flax_available():
    import os

    import jax
    import jax.numpy as jnp
47
    from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
Suraj Patil's avatar
Suraj Patil committed
48
    from flax.traverse_util import flatten_dict, unflatten_dict
49
50
51
52
    from transformers import (
        FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        FLAX_MODEL_MAPPING,
53
        FlaxAutoModel,
54
55
56
        FlaxAutoModelForSequenceClassification,
        FlaxBertModel,
    )
57
58
59
60
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
61
62
63
64
65
66
67

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8

if is_torch_available():
    import torch


Daniel Stancl's avatar
Daniel Stancl committed
68
69
70
71
72
73
74
75
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key or "initializer_factor" in key:
            setattr(configs_no_init, key, 1e-10)
    return configs_no_init


Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def ids_tensor(shape, vocab_size, rng=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = np.array(values, dtype=jnp.int32).reshape(shape)

    return output


Suraj Patil's avatar
Suraj Patil committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return np.array(values, dtype=jnp.float32).reshape(shape)


Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
112
113
114
115
116
def random_attention_mask(shape, rng=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


117
@require_flax
Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
120
class FlaxModelTesterMixin:
    model_tester = None
    all_model_classes = ()
121
    test_mismatched_shapes = True
Daniel Stancl's avatar
Daniel Stancl committed
122
    is_encoder_decoder = False
123
    test_head_masking = False
124
    has_attentions = True
Sylvain Gugger's avatar
Sylvain Gugger committed
125

126
127
128
129
130
131
132
    def _prepare_for_class(self, inputs_dict, model_class):
        inputs_dict = copy.deepcopy(inputs_dict)

        # hack for now until we have AutoModel classes
        if "ForMultipleChoice" in model_class.__name__:
            inputs_dict = {
                k: jnp.broadcast_to(v[:, None], (v.shape[0], self.model_tester.num_choices, v.shape[-1]))
133
                if isinstance(v, (jnp.ndarray, np.ndarray))
134
135
                else v
                for k, v in inputs_dict.items()
136
137
138
139
            }

        return inputs_dict

Sylvain Gugger's avatar
Sylvain Gugger committed
140
    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
141
        diff = np.abs((a - b)).max()
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
            dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

            def recursive_check(tuple_object, dict_object):
                if isinstance(tuple_object, (List, Tuple)):
                    for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                        recursive_check(tuple_iterable_value, dict_iterable_value)
                elif tuple_object is None:
                    return
                else:
158
                    self.assert_almost_equals(jnp.nan_to_num(tuple_object), jnp.nan_to_num(dict_object), 1e-5)
159

160
            recursive_check(tuple_output, dict_output)
161
162
163
164
165
166
167
168
169
170
171
172

        for model_class in self.all_model_classes:
            model = model_class(config)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

173
174
    # (Copied from tests.test_modeling_common.ModelTesterMixin.check_pt_flax_outputs)
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
175
176
177
178
179
180
181
182
183
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
224
            else:
225
226
227
228
229
230
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

231
        elif isinstance(fx_outputs, jnp.ndarray):
232
233
234
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
235
236
237
238
239

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

240
241
242
243
244
245
246
247
248
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

249
250
251
252
253
254
255
256
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

257
258
259
260
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
261
262
        else:
            raise ValueError(
263
264
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
265
266
            )

267
    @is_pt_flax_cross_test
268
    def test_equivalence_pt_to_flax(self):
269
270
        # It might be better to put this inside the for loop below (because we modify the config there).
        # But logically, it is fine.
Sylvain Gugger's avatar
Sylvain Gugger committed
271
272
273
274
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
275
276
277

                # Output all for aggressive testing
                config.output_hidden_states = True
278
                config.output_attentions = self.has_attentions
279

280
                # prepare inputs
281
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
282
                pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()}
283
284

                # load corresponding PyTorch class
Sylvain Gugger's avatar
Sylvain Gugger committed
285
286
287
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

288
                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
289
290
291
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
292
                fx_model = model_class(config, dtype=jnp.float32)
293

294
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
295
                fx_model.params = fx_state
Sylvain Gugger's avatar
Sylvain Gugger committed
296

297
298
299
                # send pytorch model to the correct device
                pt_model.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
300
                with torch.no_grad():
301
302
303
304
305
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**prepared_inputs_dict)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
306

307
                self.assertEqual(fx_keys, pt_keys)
308
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
309

310
311
312
313
                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

314
315
316
317
318
319
                fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
320
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
321
322
323
324
325
326
327

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
328
329
330

                # Output all for aggressive testing
                config.output_hidden_states = True
331
                config.output_attentions = self.has_attentions
332

333
334
                # prepare inputs
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
335
                pt_inputs = {k: torch.tensor(v.tolist(), device=torch_device) for k, v in prepared_inputs_dict.items()}
336
337
338
339
340
341

                # load corresponding PyTorch class
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)

                pt_model = pt_model_class(config).eval()
Daniel Stancl's avatar
Daniel Stancl committed
342
343
344
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False
345
346
347
348
349
350
351
                fx_model = model_class(config, dtype=jnp.float32)

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

352
353
354
                # send pytorch model to the correct device
                pt_model.to(torch_device)

355
                with torch.no_grad():
356
357
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**prepared_inputs_dict)
358

359
360
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
Daniel Stancl's avatar
Daniel Stancl committed
361

362
                self.assertEqual(fx_keys, pt_keys)
363
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
364
365
366
367
368

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)

369
370
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
371
                pt_model_loaded.eval()
372

373
                with torch.no_grad():
374
375
376
377
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])
378

379
                self.assertEqual(fx_keys, pt_keys)
380
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
381
382

    def test_from_pretrained_save_pretrained(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
383
384
385
386
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
387
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
388

389
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
390
                outputs = model(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
391

392
                # verify that normal save_pretrained works as expected
393
394
395
396
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_loaded = model_class.from_pretrained(tmpdirname)

397
                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
398
399
400
401
402
403
404
405
406
407
                for output_loaded, output in zip(outputs_loaded, outputs):
                    self.assert_almost_equals(output_loaded, output, 1e-3)

                # verify that save_pretrained for distributed training
                # with `params=params` works as expected
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname, params=model.params)
                    model_loaded = model_class.from_pretrained(tmpdirname)

                outputs_loaded = model_loaded(**prepared_inputs_dict).to_tuple()
408
                for output_loaded, output in zip(outputs_loaded, outputs):
409
                    self.assert_almost_equals(output_loaded, output, 1e-3)
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_save_load_from_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_to_base(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    @is_pt_flax_cross_test
    def test_save_load_from_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = base_class(config)
            base_params = flatten_dict(unfreeze(model.params))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, base_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                # save pt model
                pt_model.save_pretrained(tmpdirname)
                head_model = model_class.from_pretrained(tmpdirname, from_pt=True)

                base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))

                for key in base_param_from_head.keys():
                    max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    @is_pt_flax_cross_test
    def test_save_load_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    @is_pt_flax_cross_test
    def test_save_load_bf16_to_base_pt(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = FLAX_MODEL_MAPPING[config.__class__]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            model = model_class(config)
            model.params = model.to_bf16(model.params)
            base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))

            # convert Flax model to PyTorch model
            pt_model_class = getattr(transformers, model_class.__name__[4:])  # Skip the "Flax" at the beginning
            pt_model = pt_model_class(config).eval()
            pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)

            # check that all base model weights are loaded correctly
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_model.save_pretrained(tmpdirname)
                base_model = base_class.from_pretrained(tmpdirname, from_pt=True)

                base_params = flatten_dict(unfreeze(base_model.params))

                for key in base_params_from_head.keys():
                    max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

541
542
543
544
545
    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
546
                prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
547
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
548
549

                @jax.jit
Suraj Patil's avatar
Suraj Patil committed
550
                def model_jitted(input_ids, attention_mask=None, **kwargs):
551
                    return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
552
553

                with self.subTest("JIT Enabled"):
554
                    jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
555
556
557

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
558
                        outputs = model_jitted(**prepared_inputs_dict).to_tuple()
Sylvain Gugger's avatar
Sylvain Gugger committed
559
560
561

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
Daniel Stancl's avatar
Daniel Stancl committed
562

Sylvain Gugger's avatar
Sylvain Gugger committed
563
                    self.assertEqual(jitted_output.shape, output.shape)
564

565
566
567
568
569
570
571
572
573
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.__call__)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

Daniel Stancl's avatar
Daniel Stancl committed
574
575
576
577
578
579
580
581
582
583
584
            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
            else:
                expected_arg_names = ["input_ids", "attention_mask"]
                self.assertListEqual(arg_names[:2], expected_arg_names)
585

586
587
588
589
590
591
592
593
594
595
    def test_naming_convention(self):
        for model_class in self.all_model_classes:
            model_class_name = model_class.__name__
            module_class_name = (
                model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module"
            )
            bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name])
            module_cls = getattr(bert_modeling_flax_module, module_class_name)

            self.assertIsNotNone(module_cls)
596
597
598
599
600
601

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
602
            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
603

Daniel Stancl's avatar
Daniel Stancl committed
604
605
606
607
608
609
610
611
612
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
            else:
                seq_length = self.model_tester.seq_length
613
614
615
616
617
618

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

Daniel Stancl's avatar
Daniel Stancl committed
619
620
621
622
623
624
625
626
627
628
629
630
631
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

632
633
634
635
636
637
638
639
640
641
642
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)
643
644
645
646
647
648

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_length = getattr(self.model_tester, "seq_length", None)
Daniel Stancl's avatar
Daniel Stancl committed
649
650
651
652
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
653
654
655
656
657
658

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
659
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
660
661
662
663
664
665
666
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Daniel Stancl's avatar
Daniel Stancl committed
667
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
668
669
670
671
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
672
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
673
674
675
            )
            out_len = len(outputs)

Daniel Stancl's avatar
Daniel Stancl committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
            if self.is_encoder_decoder:
                correct_outlen = 5

                # Question Answering model returns start_logits and end_logits
                if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )

                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

707
708
709
710
711
712
            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

Daniel Stancl's avatar
Daniel Stancl committed
713
714
715
716
717
718
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
719
720
721
722
723
724
725
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
Daniel Stancl's avatar
Daniel Stancl committed
726
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
727
            )
728

729
    def test_load_with_mismatched_shapes(self):
730
731
        if not self.test_mismatched_shapes:
            return
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
                    with self.assertRaises(ValueError):
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
746
747
                    with self.assertRaises(ValueError):
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(tmp_dir, vocab_size=10)
748
749
750
751
752
753
754
755
756
757
758

                    logger = logging.get_logger("transformers.modeling_flax_utils")
                    with CaptureLogger(logger) as cl:
                        new_model = FlaxAutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)

                    logits = new_model(**inputs_dict)["logits"]
                    self.assertEqual(logits.shape[1], 42)

759
760
761
762
763
764
765
766
767
768
769
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = FlaxAutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

Suraj Patil's avatar
Suraj Patil committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    def test_default_params_dtype(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # check if all params are still in float32 when dtype of computation is half-precision
            model = model_class(config, dtype=jnp.float16)
            types = jax.tree_map(lambda x: x.dtype, model.params)
            types = flatten_dict(types)

            for name, type_ in types.items():
                self.assertEquals(type_, jnp.float32, msg=f"param {name} is not initialized in fp32.")

    def test_to_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to bf16
            params = model.to_bf16(model.params)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in bf16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_bf16(model.params, mask)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in bf16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

    def test_to_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16
            params = model.to_fp16(model.params)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in fp16
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            params = model.to_fp16(model.params, mask)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            # test if all params are in fp16 except key
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} should be in fp32.")
                else:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_to_fp32(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

            # cast all params to fp16 and back to fp32
            params = model.to_fp16(model.params)
            params = model.to_fp32(params)

            # test if all params are in fp32
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

            # test masking
            flat_params = flatten_dict(params)
            key = random.choice(list(flat_params.keys()))  # choose a random param
            mask = {path: path != key for path in flat_params}  # don't cast the key
            mask = unflatten_dict(mask)

            # cast to fp16 and back to fp32 with mask
            params = model.to_fp16(model.params)
            params = model.to_fp32(params, mask)

            # test if all params are in fp32 except key
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, params))
            for name, type_ in types.items():
                if name == key:
                    self.assertEqual(type_, jnp.float16, msg=f"param {name} should be in fp16.")
                else:
                    self.assertEqual(type_, jnp.float32, msg=f"param {name} is not in fp32.")

    def test_save_load_in_fp16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to fp16 and save
        params = model.to_fp16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, model.params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.float16, msg=f"param {name} is not in fp16.")

    def test_save_load_in_bf16(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)

        # convert weights to bf16 and save
        params = model.to_bf16(model.params)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, params=params)

            # load the weights again and check if they are still in fp16
            model = model_class.from_pretrained(tmpdirname)
            types = flatten_dict(jax.tree_map(lambda x: x.dtype, model.params))
            for name, type_ in types.items():
                self.assertEqual(type_, jnp.bfloat16, msg=f"param {name} is not in bf16.")

905
906
907
908
909
910
911
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "__call__"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    def test_headmasking(self):
        if not self.test_head_masking:
            return
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        def _prepare_layer_head_mask(i, attention_heads, num_hidden_layers):
            if i == 0:
                return np.concatenate([np.zeros(1, dtype=jnp.int32), np.ones(attention_heads - 1, dtype=jnp.int32)])
            if i == num_hidden_layers - 1:
                return np.concatenate([np.zeros(attention_heads - 1, dtype=jnp.int32), np.ones(1, dtype=jnp.int32)])
            return np.ones(attention_heads, dtype=jnp.int32)

        for model_class in self.all_model_classes:
            model = model_class(config)

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            # Prepare head mask
            inputs["head_mask"] = np.stack(
                [
                    _prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers)
                    for i in range(config.num_hidden_layers)
                ]
            )
            outputs = model(**inputs)

            def _check_attentions_validity(attentions):
                # Remove NaN
                for t in attentions:
                    # Check we don't have more than 25% nans (arbitrary)
                    self.assertLess(np.isnan(t).sum(), t.size / 4)
                attentions = [np.where(np.isnan(t), 0.0, t) for t in attentions]

                self.assertAlmostEqual(attentions[0][..., 0, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].sum(), 0.0)
                if len(attentions) > 2:  # encoder-decodere models have only 2 layers in each modules
                    self.assertNotEqual(attentions[1][..., 0, :, :].sum(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].sum(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].sum(), 0.0)

            if model.config.is_encoder_decoder:
                raise NotImplementedError("The test has not been implemented for encoder-decoder models yet.")
            else:
                _check_attentions_validity(outputs.attentions)

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    def test_no_automatic_init(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            model = model_class(config, _do_init=False)

            # Check that accesing parmas raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                params = model.params

            # Check if we params can be properly initialized when calling init_weights
            params = model.init_weights(model.key, model.input_shape)
            self.assertIsInstance(params, FrozenDict)
            # Check if all required parmas are initialized
            keys = set(flatten_dict(unfreeze(params)).keys())
            self.assertTrue(all(k in keys for k in model.required_params))
            # Check if the shapes match
            flat_params = flatten_dict(unfreeze(params))
            for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items():
                self.assertEqual(
                    v.shape,
                    flat_params[k].shape,
                    "Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape),
                )

            # Check that setting params raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                model.params = params

            # Check if we can do a forward pass
            inputs_dict["output_hidden_states"] = True
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
            model(**inputs, params=params)

    def test_from_pretrained_with_no_automatic_init(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        def _assert_all_params_initialised(model, params):
            # Check if all required parmas are loaded
            keys = set(flatten_dict(unfreeze(params)).keys())
            self.assertTrue(all(k in keys for k in model.required_params))
            # Check if the shapes match
            flat_params = flatten_dict(unfreeze(params))
            for k, v in flatten_dict(unfreeze(model.params_shape_tree)).items():
                self.assertEqual(
                    v.shape,
                    flat_params[k].shape,
                    "Shapes of {} do not match. Expecting {}, got {}.".format(k, v.shape, flat_params[k].shape),
                )

        for model_class in self.all_model_classes:
            # init the model
            model = model_class(config)

            # save the model in the temporary directory
            # load the saved model with _do_init=False
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model, params = model_class.from_pretrained(tmpdirname, _do_init=False)

            # Check that accesing parmas raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                params = model.params

            # Check if all required parmas are loaded
            _assert_all_params_initialised(model, params)

            # Check that setting params raises an ValueError when _do_init is False
            with self.assertRaises(ValueError):
                model.params = params

            # Check if init_weights initializes missing keys from from_pretrained
            flat_params = flatten_dict(unfreeze(params))
            random_key = random.choice(list(flat_params.keys()))
            flat_params.pop(random_key)
            params = freeze(unflatten_dict(flat_params))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, params=params)
                model, params = model_class.from_pretrained(tmpdirname, _do_init=False)

                params = model.init_weights(model.key, model.input_shape, params=params)
                # Check if all required parmas are loaded
                _assert_all_params_initialised(model, params)

1046
1047
1048
1049
1050
1051

@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1052
1053
1054
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
1055
1056
1057
1058

    @classmethod
    def tearDownClass(cls):
        try:
1059
            delete_repo(token=cls._token, repo_id="test-model-flax")
1060
1061
1062
1063
        except HTTPError:
            pass

        try:
1064
            delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                os.path.join(tmp_dir, "test-model-flax"), push_to_hub=True, use_auth_token=self._token
            )

            new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = FlaxBertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                os.path.join(tmp_dir, "test-model-flax-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")

            base_params = flatten_dict(unfreeze(model.params))
            new_params = flatten_dict(unfreeze(new_model.params))

            for key in base_params.keys():
                max_diff = (base_params[key] - new_params[key]).sum().item()
                self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")