Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
8d4bb020
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "972fdcc77878cf7afcc8aef8979d6b4241005bb6"
Unverified
Commit
8d4bb020
authored
Dec 10, 2020
by
Sylvain Gugger
Committed by
GitHub
Dec 10, 2020
Browse files
Refactor FLAX tests (#9034)
parent
1310e1a7
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
298 additions
and
114 deletions
+298
-114
src/transformers/tokenization_utils_base.py
src/transformers/tokenization_utils_base.py
+1
-0
tests/test_modeling_flax_bert.py
tests/test_modeling_flax_bert.py
+85
-57
tests/test_modeling_flax_common.py
tests/test_modeling_flax_common.py
+127
-0
tests/test_modeling_flax_roberta.py
tests/test_modeling_flax_roberta.py
+85
-57
No files found.
src/transformers/tokenization_utils_base.py
View file @
8d4bb020
...
@@ -50,6 +50,7 @@ if is_tf_available():
...
@@ -50,6 +50,7 @@ if is_tf_available():
if
is_torch_available
():
if
is_torch_available
():
import
torch
import
torch
if
is_flax_available
():
if
is_flax_available
():
import
jax.numpy
as
jnp
import
jax.numpy
as
jnp
...
...
tests/test_modeling_flax_bert.py
View file @
8d4bb020
...
@@ -14,70 +14,98 @@
...
@@ -14,70 +14,98 @@
import
unittest
import
unittest
from
numpy
import
ndarray
from
transformers
import
BertConfig
,
is_flax_available
from
transformers.testing_utils
import
require_flax
from
transformers
import
BertTokenizerFast
,
TensorType
,
is_flax_available
,
is_torch_available
from
.test_modeling_flax_common
import
FlaxModelTesterMixin
,
ids_tensor
,
random_attention_mask
from
transformers.testing_utils
import
require_flax
,
require_torch
if
is_flax_available
():
if
is_flax_available
():
import
os
os
.
environ
[
"XLA_PYTHON_CLIENT_MEM_FRACTION"
]
=
"0.12"
# assumed parallelism: 8
import
jax
from
transformers.models.bert.modeling_flax_bert
import
FlaxBertModel
from
transformers.models.bert.modeling_flax_bert
import
FlaxBertModel
if
is_torch_available
():
import
torch
from
transformers.models.bert.modeling_bert
import
BertModel
class
FlaxBertModelTester
(
unittest
.
TestCase
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_attention_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_attention_mask
=
use_attention_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
attention_mask
=
None
if
self
.
use_attention_mask
:
attention_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
config
=
BertConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
is_decoder
=
False
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
attention_mask
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
config
,
input_ids
,
token_type_ids
,
attention_mask
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
attention_mask
}
return
config
,
inputs_dict
@
require_flax
@
require_flax
@
require_torch
class
FlaxBertModelTest
(
FlaxModelTesterMixin
,
unittest
.
TestCase
):
class
FlaxBertModelTest
(
unittest
.
TestCase
):
def
assert_almost_equals
(
self
,
a
:
ndarray
,
b
:
ndarray
,
tol
:
float
):
all_model_classes
=
(
FlaxBertModel
,)
if
is_flax_available
()
else
()
diff
=
(
a
-
b
).
sum
()
self
.
assertLessEqual
(
diff
,
tol
,
f
"Difference between torch and flax is
{
diff
}
(>=
{
tol
}
)"
)
def
setUp
(
self
):
self
.
model_tester
=
FlaxBertModelTester
(
self
)
def
test_from_pytorch
(
self
):
with
torch
.
no_grad
():
with
self
.
subTest
(
"bert-base-cased"
):
tokenizer
=
BertTokenizerFast
.
from_pretrained
(
"bert-base-cased"
)
fx_model
=
FlaxBertModel
.
from_pretrained
(
"bert-base-cased"
)
pt_model
=
BertModel
.
from_pretrained
(
"bert-base-cased"
)
# Check for simple input
pt_inputs
=
tokenizer
.
encode_plus
(
"This is a simple input"
,
return_tensors
=
TensorType
.
PYTORCH
)
fx_inputs
=
tokenizer
.
encode_plus
(
"This is a simple input"
,
return_tensors
=
TensorType
.
JAX
)
pt_outputs
=
pt_model
(
**
pt_inputs
).
to_tuple
()
fx_outputs
=
fx_model
(
**
fx_inputs
)
self
.
assertEqual
(
len
(
fx_outputs
),
len
(
pt_outputs
),
"Output lengths differ between Flax and PyTorch"
)
for
fx_output
,
pt_output
in
zip
(
fx_outputs
,
pt_outputs
):
self
.
assert_almost_equals
(
fx_output
,
pt_output
.
numpy
(),
5e-3
)
def
test_multiple_sequences
(
self
):
tokenizer
=
BertTokenizerFast
.
from_pretrained
(
"bert-base-cased"
)
model
=
FlaxBertModel
.
from_pretrained
(
"bert-base-cased"
)
sequences
=
[
"this is an example sentence"
,
"this is another"
,
"and a third one"
]
encodings
=
tokenizer
(
sequences
,
return_tensors
=
TensorType
.
JAX
,
padding
=
True
,
truncation
=
True
)
@
jax
.
jit
def
model_jitted
(
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
):
return
model
(
input_ids
,
attention_mask
,
token_type_ids
)
with
self
.
subTest
(
"JIT Disabled"
):
with
jax
.
disable_jit
():
tokens
,
pooled
=
model_jitted
(
**
encodings
)
self
.
assertEqual
(
tokens
.
shape
,
(
3
,
7
,
768
))
self
.
assertEqual
(
pooled
.
shape
,
(
3
,
768
))
with
self
.
subTest
(
"JIT Enabled"
):
jitted_tokens
,
jitted_pooled
=
model_jitted
(
**
encodings
)
self
.
assertEqual
(
jitted_tokens
.
shape
,
(
3
,
7
,
768
))
self
.
assertEqual
(
jitted_pooled
.
shape
,
(
3
,
768
))
tests/test_modeling_flax_common.py
0 → 100644
View file @
8d4bb020
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
random
import
numpy
as
np
import
transformers
from
transformers
import
is_flax_available
,
is_torch_available
from
transformers.testing_utils
import
require_flax
,
require_torch
if
is_flax_available
():
import
os
import
jax
import
jax.numpy
as
jnp
from
flax.traverse_util
import
unflatten_dict
os
.
environ
[
"XLA_PYTHON_CLIENT_MEM_FRACTION"
]
=
"0.12"
# assumed parallelism: 8
if
is_torch_available
():
import
torch
def
ids_tensor
(
shape
,
vocab_size
,
rng
=
None
):
"""Creates a random int32 tensor of the shape within the vocab size."""
if
rng
is
None
:
rng
=
random
.
Random
()
total_dims
=
1
for
dim
in
shape
:
total_dims
*=
dim
values
=
[]
for
_
in
range
(
total_dims
):
values
.
append
(
rng
.
randint
(
0
,
vocab_size
-
1
))
output
=
np
.
array
(
values
,
dtype
=
jnp
.
int32
).
reshape
(
shape
)
return
output
def
random_attention_mask
(
shape
,
rng
=
None
):
attn_mask
=
ids_tensor
(
shape
,
vocab_size
=
2
,
rng
=
rng
)
# make sure that at least one token is attended to for each batch
attn_mask
[:,
-
1
]
=
1
return
attn_mask
def
convert_pt_model_to_flax
(
pt_model
,
config
,
flax_model_cls
):
state
=
pt_model
.
state_dict
()
state
=
{
k
:
v
.
numpy
()
for
k
,
v
in
state
.
items
()}
state
=
flax_model_cls
.
convert_from_pytorch
(
state
,
config
)
state
=
unflatten_dict
({
tuple
(
k
.
split
(
"."
)):
v
for
k
,
v
in
state
.
items
()})
return
flax_model_cls
(
config
,
state
,
dtype
=
jnp
.
float32
)
@
require_flax
class
FlaxModelTesterMixin
:
model_tester
=
None
all_model_classes
=
()
def
assert_almost_equals
(
self
,
a
:
np
.
ndarray
,
b
:
np
.
ndarray
,
tol
:
float
):
diff
=
np
.
abs
((
a
-
b
)).
sum
()
self
.
assertLessEqual
(
diff
,
tol
,
f
"Difference between torch and flax is
{
diff
}
(>=
{
tol
}
)."
)
@
require_torch
def
test_equivalence_flax_pytorch
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
with
self
.
subTest
(
model_class
.
__name__
):
pt_model_class_name
=
model_class
.
__name__
[
4
:]
# Skip the "Flax" at the beginning
pt_model_class
=
getattr
(
transformers
,
pt_model_class_name
)
pt_model
=
pt_model_class
(
config
).
eval
()
fx_model
=
convert_pt_model_to_flax
(
pt_model
,
config
,
model_class
)
pt_inputs
=
{
k
:
torch
.
tensor
(
v
.
tolist
())
for
k
,
v
in
inputs_dict
.
items
()}
with
torch
.
no_grad
():
pt_outputs
=
pt_model
(
**
pt_inputs
).
to_tuple
()
fx_outputs
=
fx_model
(
**
inputs_dict
)
self
.
assertEqual
(
len
(
fx_outputs
),
len
(
pt_outputs
),
"Output lengths differ between Flax and PyTorch"
)
for
fx_output
,
pt_output
in
zip
(
fx_outputs
,
pt_outputs
):
self
.
assert_almost_equals
(
fx_output
,
pt_output
.
numpy
(),
5e-3
)
@
require_torch
def
test_jit_compilation
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
with
self
.
subTest
(
model_class
.
__name__
):
# TODO later: have some way to initialize easily a Flax model from config, for now I go through PT
pt_model_class_name
=
model_class
.
__name__
[
4
:]
# Skip the "Flax" at the beginning
pt_model_class
=
getattr
(
transformers
,
pt_model_class_name
)
pt_model
=
pt_model_class
(
config
).
eval
()
model
=
convert_pt_model_to_flax
(
pt_model
,
config
,
model_class
)
@
jax
.
jit
def
model_jitted
(
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
):
return
model
(
input_ids
,
attention_mask
,
token_type_ids
)
with
self
.
subTest
(
"JIT Disabled"
):
with
jax
.
disable_jit
():
outputs
=
model_jitted
(
**
inputs_dict
)
with
self
.
subTest
(
"JIT Enabled"
):
jitted_outputs
=
model_jitted
(
**
inputs_dict
)
self
.
assertEqual
(
len
(
outputs
),
len
(
jitted_outputs
))
for
jitted_output
,
output
in
zip
(
jitted_outputs
,
outputs
):
self
.
assertEqual
(
jitted_output
.
shape
,
output
.
shape
)
tests/test_modeling_flax_roberta.py
View file @
8d4bb020
...
@@ -14,70 +14,98 @@
...
@@ -14,70 +14,98 @@
import
unittest
import
unittest
from
numpy
import
ndarray
from
transformers
import
RobertaConfig
,
is_flax_available
from
transformers.testing_utils
import
require_flax
from
transformers
import
RobertaTokenizerFast
,
TensorType
,
is_flax_available
,
is_torch_available
from
.test_modeling_flax_common
import
FlaxModelTesterMixin
,
ids_tensor
,
random_attention_mask
from
transformers.testing_utils
import
require_flax
,
require_torch
if
is_flax_available
():
if
is_flax_available
():
import
os
os
.
environ
[
"XLA_PYTHON_CLIENT_MEM_FRACTION"
]
=
"0.12"
# assumed parallelism: 8
import
jax
from
transformers.models.roberta.modeling_flax_roberta
import
FlaxRobertaModel
from
transformers.models.roberta.modeling_flax_roberta
import
FlaxRobertaModel
if
is_torch_available
():
import
torch
from
transformers.models.roberta.modeling_roberta
import
RobertaModel
class
FlaxRobertaModelTester
(
unittest
.
TestCase
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_attention_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_attention_mask
=
use_attention_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
attention_mask
=
None
if
self
.
use_attention_mask
:
attention_mask
=
random_attention_mask
([
self
.
batch_size
,
self
.
seq_length
])
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
config
=
RobertaConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
is_decoder
=
False
,
initializer_range
=
self
.
initializer_range
,
)
return
config
,
input_ids
,
token_type_ids
,
attention_mask
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
config
,
input_ids
,
token_type_ids
,
attention_mask
=
config_and_inputs
inputs_dict
=
{
"input_ids"
:
input_ids
,
"token_type_ids"
:
token_type_ids
,
"attention_mask"
:
attention_mask
}
return
config
,
inputs_dict
@
require_flax
@
require_flax
@
require_torch
class
FlaxRobertaModelTest
(
FlaxModelTesterMixin
,
unittest
.
TestCase
):
class
FlaxRobertaModelTest
(
unittest
.
TestCase
):
def
assert_almost_equals
(
self
,
a
:
ndarray
,
b
:
ndarray
,
tol
:
float
):
all_model_classes
=
(
FlaxRobertaModel
,)
if
is_flax_available
()
else
()
diff
=
(
a
-
b
).
sum
()
self
.
assertLessEqual
(
diff
,
tol
,
f
"Difference between torch and flax is
{
diff
}
(>=
{
tol
}
)"
)
def
setUp
(
self
):
self
.
model_tester
=
FlaxRobertaModelTester
(
self
)
def
test_from_pytorch
(
self
):
with
torch
.
no_grad
():
with
self
.
subTest
(
"roberta-base"
):
tokenizer
=
RobertaTokenizerFast
.
from_pretrained
(
"roberta-base"
)
fx_model
=
FlaxRobertaModel
.
from_pretrained
(
"roberta-base"
)
pt_model
=
RobertaModel
.
from_pretrained
(
"roberta-base"
)
# Check for simple input
pt_inputs
=
tokenizer
.
encode_plus
(
"This is a simple input"
,
return_tensors
=
TensorType
.
PYTORCH
)
fx_inputs
=
tokenizer
.
encode_plus
(
"This is a simple input"
,
return_tensors
=
TensorType
.
JAX
)
pt_outputs
=
pt_model
(
**
pt_inputs
)
fx_outputs
=
fx_model
(
**
fx_inputs
)
self
.
assertEqual
(
len
(
fx_outputs
),
len
(
pt_outputs
),
"Output lengths differ between Flax and PyTorch"
)
for
fx_output
,
pt_output
in
zip
(
fx_outputs
,
pt_outputs
.
to_tuple
()):
self
.
assert_almost_equals
(
fx_output
,
pt_output
.
numpy
(),
5e-3
)
def
test_multiple_sequences
(
self
):
tokenizer
=
RobertaTokenizerFast
.
from_pretrained
(
"roberta-base"
)
model
=
FlaxRobertaModel
.
from_pretrained
(
"roberta-base"
)
sequences
=
[
"this is an example sentence"
,
"this is another"
,
"and a third one"
]
encodings
=
tokenizer
(
sequences
,
return_tensors
=
TensorType
.
JAX
,
padding
=
True
,
truncation
=
True
)
@
jax
.
jit
def
model_jitted
(
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
):
return
model
(
input_ids
,
attention_mask
,
token_type_ids
)
with
self
.
subTest
(
"JIT Disabled"
):
with
jax
.
disable_jit
():
tokens
,
pooled
=
model_jitted
(
**
encodings
)
self
.
assertEqual
(
tokens
.
shape
,
(
3
,
7
,
768
))
self
.
assertEqual
(
pooled
.
shape
,
(
3
,
768
))
with
self
.
subTest
(
"JIT Enabled"
):
jitted_tokens
,
jitted_pooled
=
model_jitted
(
**
encodings
)
self
.
assertEqual
(
jitted_tokens
.
shape
,
(
3
,
7
,
768
))
self
.
assertEqual
(
jitted_pooled
.
shape
,
(
3
,
768
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment