test_modeling_flax_common.py 5.98 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
16
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
17
18
19
20
21
22
23
24
25
26
27
28
29

import numpy as np

import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import require_flax, require_torch


if is_flax_available():
    import os

    import jax
    import jax.numpy as jnp
30
    from transformers.modeling_flax_utils import convert_state_dict_from_pt
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12"  # assumed parallelism: 8

if is_torch_available():
    import torch


def ids_tensor(shape, vocab_size, rng=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = random.Random()

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))

    output = np.array(values, dtype=jnp.int32).reshape(shape)

    return output


def random_attention_mask(shape, rng=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=rng)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


@require_flax
class FlaxModelTesterMixin:
    model_tester = None
    all_model_classes = ()

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
69
        diff = np.abs((a - b)).max()
Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
74
75
76
77
78
79
80
81
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @require_torch
    def test_equivalence_flax_pytorch(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                pt_model_class_name = model_class.__name__[4:]  # Skip the "Flax" at the beginning
                pt_model_class = getattr(transformers, pt_model_class_name)
                pt_model = pt_model_class(config).eval()

82
83
84
                fx_state = convert_state_dict_from_pt(model_class, pt_model.state_dict(), config)
                fx_model = model_class(config, dtype=jnp.float32)
                fx_model.params = fx_state
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87
88
89

                pt_inputs = {k: torch.tensor(v.tolist()) for k, v in inputs_dict.items()}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()
90

Sylvain Gugger's avatar
Sylvain Gugger committed
91
92
93
                fx_outputs = fx_model(**inputs_dict)
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
94
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 1e-3)
Sylvain Gugger's avatar
Sylvain Gugger committed
95

96
97
98
99
100
101
102
103
104
105
106
107
                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**inputs_dict)
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 5e-3)

    def test_from_pretrained_save_pretrained(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
111
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
112
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
113

114
                outputs = model(**inputs_dict)
Sylvain Gugger's avatar
Sylvain Gugger committed
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
                with tempfile.TemporaryDirectory() as tmpdirname:
                    model.save_pretrained(tmpdirname)
                    model_loaded = model_class.from_pretrained(tmpdirname)

                outputs_loaded = model_loaded(**inputs_dict)
                for output_loaded, output in zip(outputs_loaded, outputs):
                    self.assert_almost_equals(output_loaded, output, 5e-3)

    def test_jit_compilation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                model = model_class(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

                @jax.jit
                def model_jitted(input_ids, attention_mask=None, token_type_ids=None):
                    return model(input_ids, attention_mask, token_type_ids)

                with self.subTest("JIT Disabled"):
                    with jax.disable_jit():
                        outputs = model_jitted(**inputs_dict)

                with self.subTest("JIT Enabled"):
                    jitted_outputs = model_jitted(**inputs_dict)

                self.assertEqual(len(outputs), len(jitted_outputs))
                for jitted_output, output in zip(jitted_outputs, outputs):
                    self.assertEqual(jitted_output.shape, output.shape)
145
146
147
148
149
150
151
152
153
154
155

    def test_naming_convention(self):
        for model_class in self.all_model_classes:
            model_class_name = model_class.__name__
            module_class_name = (
                model_class_name[:-5] + "Module" if model_class_name[-5:] == "Model" else model_class_name + "Module"
            )
            bert_modeling_flax_module = __import__(model_class.__module__, fromlist=[module_class_name])
            module_cls = getattr(bert_modeling_flax_module, module_class_name)

            self.assertIsNotNone(module_cls)