run_squad.py 31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
LysandreJik's avatar
Cleanup  
LysandreJik committed
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
31
32
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
                                  XLNetTokenizer,
Lysandre's avatar
Lysandre committed
46
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
47
48
49
                                  AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering, XLMTokenizer,
                                  )
thomwolf's avatar
thomwolf committed
50

Lysandre's avatar
Lysandre committed
51
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
52
53
54

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
55
56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
57
58

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
59
60
61
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
Lysandre's avatar
Lysandre committed
62
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
63
    'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
thomwolf's avatar
thomwolf committed
64
65
}

thomwolf's avatar
thomwolf committed
66
67
68
69
70
71
72
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

73
74
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
75

76
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
77
78
79
80
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

81
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
82
83
84
85
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
86
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
87
88
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
89
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
90

91
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
92
93
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
94
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
95
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
96
    ]
97
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
98
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
LysandreJik's avatar
Cleanup  
LysandreJik committed
99

thomwolf's avatar
thomwolf committed
100
101
102
103
104
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
105
        
thomwolf's avatar
thomwolf committed
106
107
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

108
109
110
111
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
118
119
120
121
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
122
123
124
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
125
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
126
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
127

Lysandre's avatar
Lysandre committed
128
    global_step = 1
thomwolf's avatar
thomwolf committed
129
    tr_loss, logging_loss = 0.0, 0.0
130
131
132
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
LysandreJik's avatar
Cleanup  
LysandreJik committed
133
    
134
135
136
137
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
138
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
139
140
141
142
143
144
145
146

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
                'start_positions': batch[3],
                'end_positions':   batch[4]
            }

147
148
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
149

150
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
151
152
                inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})

Peiqin Lin's avatar
typos  
Peiqin Lin committed
153
            outputs = model(**inputs)
154
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
155

156
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
157
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
158
159
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
160

161
162
163
164
165
166
167
168
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
169
170
171
172
173
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

174
                optimizer.step()
175
                scheduler.step()  # Update learning rate schedule
176
177
178
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
179
                # Log metrics
180
181
182
183
184
185
186
187
188
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
189
                # Save model checkpoint
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
206
207
208
    if args.local_rank in [-1, 0]:
        tb_writer.close()

209
210
211
212
213
214
215
216
217
218
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
219

220
    # Note that DistributedSampler samples randomly
221
    eval_sampler = SequentialSampler(dataset)
222
223
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
224
    # multi-gpu evaluate
225
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
226
227
        model = torch.nn.DataParallel(model)

228
229
230
231
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
232

233
    all_results = []
234
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
235

236
237
238
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
239

240
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
241
242
243
244
245
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
            
246
247
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
LysandreJik's avatar
Cleanup  
LysandreJik committed
248

249
            example_indices = batch[3]
LysandreJik's avatar
Cleanup  
LysandreJik committed
250
251
            
            # XLNet and XLM use more arguments for their predictions
252
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
253
254
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

255
256
257
258
259
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
260

LysandreJik's avatar
LysandreJik committed
261
262
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
263
264
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
265
266
267
268
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
269
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                cls_logits = output[4]

                result = SquadResult(
                    unique_id, start_logits, end_logits, 
                    start_top_index=start_top_index, 
                    end_top_index=end_top_index, 
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

285
            all_results.append(result)
286

287
288
289
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
290
    # Compute predictions
291
292
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
293

294
295
296
297
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
298

LysandreJik's avatar
Cleanup  
LysandreJik committed
299
    # XLNet and XLM use a more complex post-processing procedure
300
    if args.model_type in ['xlnet', 'xlm']:
Lysandre's avatar
Lysandre committed
301
302
303
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

304
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
305
                        args.max_answer_length, output_prediction_file,
LysandreJik's avatar
Cleanup  
LysandreJik committed
306
                        output_nbest_file, output_null_log_odds_file,
Lysandre's avatar
Lysandre committed
307
                        start_n_top, end_n_top,
308
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
309
    else:
310
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
311
312
313
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
314

LysandreJik's avatar
Cleanup  
LysandreJik committed
315
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
316
    results = squad_evaluate(examples, predictions)
317
318
319
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
320
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
321
322
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

323
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
324
325
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
326
        'dev' if evaluate else 'train',
327
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
328
329
330
331
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
332
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
333
        logger.info("Loading features from cached file %s", cached_features_file)
334
335
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
336
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
337
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
338

339
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
340
341
342
343
344
345
346
347
348
349
350
351
            try:
                import tensorflow_datasets as tfds
            except ImportError:
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")

            if args.version_2_with_negative:
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")

            tfds_examples = tfds.load("squad")
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
352
353
354
355
356

            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
357

358
        features, dataset = squad_convert_examples_to_features( 
Lysandre's avatar
Lysandre committed
359
360
361
362
363
364
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
365
            return_dataset='pt'
Lysandre's avatar
Lysandre committed
366
367
        )

thomwolf's avatar
thomwolf committed
368
369
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
370
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
371

VictorSanh's avatar
VictorSanh committed
372
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
373
374
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

375
376
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
377
378
    return dataset

379
380
381
382
383

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
384
385
386
387
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
388
389
390
391
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
392
    parser.add_argument("--data_dir", default=None, type=str,
393
394
395
396
397
398
399
400
                        help="The input data dir. Should contain the .json files for the task." +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
    parser.add_argument("--train_file", default=None, type=str,
                        help="The input training file. If a data dir is specified, will look for the file there" +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="The input evaluation file. If a data dir is specified, will look for the file there" +
                             "If no data dir or train/predict files are specified, will run with tensorflow_datasets.")
401
402
403
404
405
406
407
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
408
409
410
411
412
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

413
414
415
416
417
418
419
420
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
421
422
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
423
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
424
                        help="Whether to run eval on the dev set.")
425
426
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
427
    parser.add_argument("--do_lower_case", action='store_true',
428
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
429

430
431
432
433
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
434
435
436
437
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
438
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
439
                        help="Weight decay if we apply some.")
440
441
442
443
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
444
445
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
446
447
448
449
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
450
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
451
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
452
453
454
455
456
457
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
458

459
460
461
462
463
464
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
465
    parser.add_argument("--no_cuda", action='store_true',
466
                        help="Whether not to use CUDA when available")
467
468
469
470
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
471
    parser.add_argument('--seed', type=int, default=42,
472
                        help="random seed for initialization")
473

thomwolf's avatar
thomwolf committed
474
    parser.add_argument("--local_rank", type=int, default=-1,
475
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
476
477
478
479
480
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
481
482
483
484
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
485
486
487
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

488
    # Setup distant debugging if needed
489
490
491
492
493
494
495
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
496
    # Setup CUDA, GPU & distributed training
497
498
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
499
500
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
501
502
503
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
504
505
        args.n_gpu = 1
    args.device = device
506

thomwolf's avatar
thomwolf committed
507
    # Setup logging
508
509
510
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
511
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
512
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
513

514
515
    # Set seed
    set_seed(args)
516

thomwolf's avatar
thomwolf committed
517
    # Load pretrained model and tokenizer
518
    if args.local_rank not in [-1, 0]:
519
520
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

521
    args.model_type = args.model_type.lower()
522
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
523
524
525
526
527
528
529
530
531
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
532
533

    if args.local_rank == 0:
534
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
535

thomwolf's avatar
thomwolf committed
536
    model.to(args.device)
537

538
539
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
540
541
542
543
544
545
546
547
548
549
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
550
    # Training
551
    if args.do_train:
552
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
553
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
554
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
555

556

thomwolf's avatar
thomwolf committed
557
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
558
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
559
560
561
562
563
564
565
566
567
568
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
569
570

        # Good practice: save your training arguments together with the trained model
571
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
572

573
        # Load a trained model and vocabulary that you have fine-tuned
Lysandre's avatar
Lysandre committed
574
        model = model_class.from_pretrained(args.output_dir, force_download=True)
Peng Qi's avatar
Peng Qi committed
575
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
576
577
578
        model.to(args.device)


thomwolf's avatar
thomwolf committed
579
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
580
581
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
582
583
584
585
586
587
588
589
590
591

        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
592

593
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
594

595
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
596
            # Reload the model
597
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
Lysandre's avatar
Lysandre committed
598
            model = model_class.from_pretrained(checkpoint, force_download=True)
599
            model.to(args.device)
thomwolf's avatar
thomwolf committed
600
601

            # Evaluate
602
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
603

604
605
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
606

607
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
608

609
    return results
610
611
612
613


if __name__ == "__main__":
    main()