run_glue.py 30.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
import logging
import os
import random
25
import json
thomwolf's avatar
thomwolf committed
26
27
28
29
30
31

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
32
33
34
35
36
37

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
38
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
                                  BertForSequenceClassification, BertTokenizer,
42
43
44
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
45
46
47
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
48
49
50
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
Lysandre's avatar
Lysandre committed
51
52
53
54
                                  DistilBertTokenizer,
                                  AlbertConfig,
                                  AlbertForSequenceClassification, 
                                  AlbertTokenizer,
55
56
57
                                  XLMRobertaConfig,
                                  XLMRobertaForSequenceClassification,
                                  XLMRobertaTokenizer,
Lysandre's avatar
Lysandre committed
58
                                )
thomwolf's avatar
thomwolf committed
59

60
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
61

62
63
64
65
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
66
67
68

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
69
70
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
71
72

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
73
74
75
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
76
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
Lysandre's avatar
Lysandre committed
77
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
78
79
    'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    'xlmroberta': (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
80
}
thomwolf's avatar
thomwolf committed
81

thomwolf's avatar
thomwolf committed
82
83
84
85
86
87
88
89
90

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
91
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
92
93
94
95
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
96
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
97
98
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
99

thomwolf's avatar
thomwolf committed
100
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
101
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
102
103
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
104
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
105

thomwolf's avatar
thomwolf committed
106
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
107
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
108
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
109
110
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
111
        ]
Lysandre's avatar
Lysandre committed
112

thomwolf's avatar
thomwolf committed
113
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
114
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
115
116
117
118
119
120
121

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'optimizer.pt')))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'scheduler.pt')))

thomwolf's avatar
thomwolf committed
122
123
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
124
            from apex import amp
thomwolf's avatar
thomwolf committed
125
126
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
127
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
128

129
130
131
132
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
139
140
    # Train!
    logger.info("***** Running training *****")
141
142
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
143
144
145
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
146
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
147
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
148
149

    global_step = 0
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
164
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
165
    model.zero_grad()
166
    train_iterator = trange(epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
167
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
168
169
170
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
171
172
173
174
175
176

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
177
            model.train()
thomwolf's avatar
thomwolf committed
178
            batch = tuple(t.to(args.device) for t in batch)
179
180
181
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
182
183
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
184
            outputs = model(**inputs)
185
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
192
193
194
195
196
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
197
198

            tr_loss += loss.item()
199
            if (step + 1) % args.gradient_accumulation_steps == 0:
200
201
202
203
204
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
205
                optimizer.step()
thomwolf's avatar
thomwolf committed
206
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
207
                model.zero_grad()
thomwolf's avatar
thomwolf committed
208
                global_step += 1
thomwolf's avatar
thomwolf committed
209

thomwolf's avatar
thomwolf committed
210
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
211
                    logs = {}
thomwolf's avatar
thomwolf committed
212
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
213
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
214
                        for key, value in results.items():
215
                            eval_key = 'eval_{}'.format(key)
Juha Kiili's avatar
Juha Kiili committed
216
217
                            logs[eval_key] = value

218
219
220
221
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs['learning_rate'] = learning_rate_scalar
                    logs['loss'] = loss_scalar
thomwolf's avatar
thomwolf committed
222
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
223

Juha Kiili's avatar
Juha Kiili committed
224
225
226
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{'step': global_step}}))
thomwolf's avatar
thomwolf committed
227
228
229
230
231
232
233
234

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
235
236
                    tokenizer.save_pretrained(output_dir)

thomwolf's avatar
thomwolf committed
237
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
238
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
239

240
241
242
243
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, 'optimizer.pt'))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, 'scheduler.pt'))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
244
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
245
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
246
247
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
248
            train_iterator.close()
thomwolf's avatar
thomwolf committed
249
            break
thomwolf's avatar
thomwolf committed
250

thomwolf's avatar
thomwolf committed
251
252
253
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
254
255
256
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
257
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
258
259
260
261
262
263
264
265
266
267
268
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
269
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
270
        # Note that DistributedSampler samples randomly
271
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
272
273
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
274
275
276
277
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
278
        # Eval!
thomwolf's avatar
thomwolf committed
279
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
280
281
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
282
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
283
284
285
286
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
287
            model.eval()
thomwolf's avatar
thomwolf committed
288
289
290
291
292
293
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
294
295
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
296
297
298
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
299
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

316
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
317
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
318
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
319
320
321
322
323
324
325
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
326
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
327
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
328
329
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
330
    processor = processors[task]()
331
332
333
334
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
335
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
336
337
        str(args.max_seq_length),
        str(task)))
338
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
339
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
340
341
        features = torch.load(cached_features_file)
    else:
342
343
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
344
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta', 'xlmroberta']:
345
            # HACK(label indices are swapped in RoBERTa pretrained model)
346
            label_list[1], label_list[2] = label_list[2], label_list[1]
347
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
348
349
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
350
351
352
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
353
354
355
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
356
        )
357
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
358
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
359
360
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
361
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
362
363
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

364
365
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
366
367
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
368
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
369
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
370
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
371
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
Lysandre's avatar
Lysandre committed
372
 
thomwolf's avatar
thomwolf committed
373
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
374
    return dataset
thomwolf's avatar
thomwolf committed
375
376


thomwolf's avatar
thomwolf committed
377
378
379
380
381
382
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
383
384
385
386
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
387
    parser.add_argument("--task_name", default=None, type=str, required=True,
388
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
389
390
391
392
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
393
394
395
396
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
397
398
399
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
400
401
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
402
403
404
405
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
406
407
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
408
409
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
410
411

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
412
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
413
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
414
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
415
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
Lysandre's avatar
Lysandre committed
416
                        help="Number of updates steps to accumulate before performing a backward/update pass.")     
thomwolf's avatar
thomwolf committed
417
418
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
419
    parser.add_argument("--weight_decay", default=0.0, type=float,
420
                        help="Weight decay if we apply some.")
thomwolf's avatar
thomwolf committed
421
422
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
423
424
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
425
426
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
427
428
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
429
430
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
431

thomwolf's avatar
thomwolf committed
432
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
433
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
434
435
436
437
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
438
439
440
441
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
442
443
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
444
445
446
447
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
448
449
450
451
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
452
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
453
454
455
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
456
457
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
458
459
460
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469
470
471
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
472
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
473
474
475
476
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
477
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
478
479
480
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
481
482
483
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
484
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
485
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
486

thomwolf's avatar
thomwolf committed
487
488
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
489
490

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
491
492
493
494
495
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
496
497
498
499
500
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
501
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
502

503
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
504
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
505
506
507
508
509
510
511
512
513
514
515
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
516
517

    if args.local_rank == 0:
518
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
519

thomwolf's avatar
thomwolf committed
520
    model.to(args.device)
thomwolf's avatar
thomwolf committed
521

thomwolf's avatar
thomwolf committed
522
523
    logger.info("Training/evaluation parameters %s", args)

524

thomwolf's avatar
thomwolf committed
525
    # Training
thomwolf's avatar
thomwolf committed
526
    if args.do_train:
527
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
528
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
529
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
530
531


thomwolf's avatar
thomwolf committed
532
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
533
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
534
535
536
537
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
538
        logger.info("Saving model checkpoint to %s", args.output_dir)
539
540
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
541
542
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
543
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
544
545

        # Good practice: save your training arguments together with the trained model
546
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
547

548
        # Load a trained model and vocabulary that you have fine-tuned
549
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
550
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
551
        model.to(args.device)
thomwolf's avatar
thomwolf committed
552

553

thomwolf's avatar
thomwolf committed
554
    # Evaluation
thomwolf's avatar
thomwolf committed
555
    results = {}
thomwolf's avatar
thomwolf committed
556
    if args.do_eval and args.local_rank in [-1, 0]:
557
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
558
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
559
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
560
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
561
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
562
563
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
564
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
565
566
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
567
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
568
            model.to(args.device)
569
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
570
571
572
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
573
    return results
thomwolf's avatar
thomwolf committed
574
575
576
577


if __name__ == "__main__":
    main()