README.md 37.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
<p align="center">
    <br>
thomwolf's avatar
thomwolf committed
3
    <img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
thomwolf's avatar
thomwolf committed
4
5
6
    <br>
<p>
<p align="center">
Lysandre Debut's avatar
Lysandre Debut committed
7
    <a href="https://circleci.com/gh/huggingface/transformers">
thomwolf's avatar
thomwolf committed
8
        <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
thomwolf's avatar
thomwolf committed
9
10
    </a>
    <a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
thomwolf's avatar
thomwolf committed
11
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
thomwolf's avatar
thomwolf committed
12
13
    </a>
    <a href="https://huggingface.co/transformers/index.html">
thomwolf's avatar
thomwolf committed
14
        <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online">
thomwolf's avatar
thomwolf committed
15
16
    </a>
    <a href="https://github.com/huggingface/transformers/releases">
thomwolf's avatar
thomwolf committed
17
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
thomwolf's avatar
thomwolf committed
18
19
20
    </a>
</p>

thomwolf's avatar
thomwolf committed
21
22
23
<h3 align="center">
<p>State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
</h3>
thomwolf's avatar
thomwolf committed
24

keskarnitish's avatar
keskarnitish committed
25
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
thomwolf's avatar
thomwolf committed
26
27

### Features
thomwolf's avatar
thomwolf committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41

- As easy to use as pytorch-transformers
- As powerful and concise as Keras
- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

State-of-the-art NLP for everyone
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

Lower compute costs, smaller carbon footprint
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
42
- 10 architectures with over 30 pretrained models, some in more than 100 languages
thomwolf's avatar
thomwolf committed
43
44
45

Choose the right framework for every part of a model's lifetime
- Train state-of-the-art models in 3 lines of code
thomwolf's avatar
thomwolf committed
46
47
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
thomwolf's avatar
thomwolf committed
48
- Seamlessly pick the right framework for training, evaluation, production
Julien Chaumond's avatar
Julien Chaumond committed
49

thomwolf's avatar
indeed  
thomwolf committed
50

thomwolf's avatar
thomwolf committed
51
52
53
| Section | Description |
|-|-|
| [Installation](#installation) | How to install the package |
thomwolf's avatar
thomwolf committed
54
| [Model architectures](#model-architectures) | Architectures (with pretrained weights) |
thomwolf's avatar
thomwolf committed
55
56
| [Online demo](#online-demo) | Experimenting with this repo’s text generation capabilities |
| [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
wangfei's avatar
wangfei committed
57
| [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
thomwolf's avatar
thomwolf committed
58
| [Quick tour: pipelines](#quick-tour-of-pipelines) | Using Pipelines: Wrapper around tokenizer and models to use finetuned models |
thomwolf's avatar
thomwolf committed
59
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
60
| [Quick tour: Share your models ](#Quick-tour-of-model-sharing) | Upload and share your fine-tuned models with the community |
61
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
thomwolf's avatar
thomwolf committed
62
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
Arnaud's avatar
Arnaud committed
63
| [Documentation][(v2.4.0)](https://huggingface.co/transformers/v2.4.0)[(v2.3.0)](https://huggingface.co/transformers/v2.3.0)[(v2.2.0/v2.2.1/v2.2.2)](https://huggingface.co/transformers/v2.2.0) [(v2.1.1)](https://huggingface.co/transformers/v2.1.1) [(v2.0.0)](https://huggingface.co/transformers/v2.0.0) [(v1.2.0)](https://huggingface.co/transformers/v1.2.0) [(v1.1.0)](https://huggingface.co/transformers/v1.1.0) [(v1.0.0)](https://huggingface.co/transformers/v1.0.0) [(master)](https://huggingface.co/transformers) | Full API documentation and more |
thomwolf's avatar
thomwolf committed
64

thomwolf's avatar
thomwolf committed
65
## Installation
VictorSanh's avatar
VictorSanh committed
66

67
This repo is tested on Python 3.5+, PyTorch 1.0.0+ and TensorFlow 2.0.0-rc1
VictorSanh's avatar
VictorSanh committed
68

69
70
71
72
73
74
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).

Create a virtual environment with the version of Python you're going to use and activate it.

Now, if you want to use 🤗 Transformers, you can install it with pip. If you'd like to play with the examples, you must install it from source.

thomwolf's avatar
thomwolf committed
75
### With pip
thomwolf's avatar
thomwolf committed
76

77
First you need to install one of, or both, TensorFlow 2.0 and PyTorch.
Christopher Goh's avatar
Christopher Goh committed
78
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
79
80

When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows:
thomwolf's avatar
thomwolf committed
81

thomwolf's avatar
thomwolf committed
82
```bash
83
pip install transformers
thomwolf's avatar
thomwolf committed
84
```
VictorSanh's avatar
VictorSanh committed
85

thomwolf's avatar
thomwolf committed
86
### From source
thomwolf's avatar
thomwolf committed
87

88
Here also, you first need to install one of, or both, TensorFlow 2.0 and PyTorch.
Christopher Goh's avatar
Christopher Goh committed
89
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
90

DenysNahurnyi's avatar
DenysNahurnyi committed
91
When TensorFlow 2.0 and/or PyTorch has been installed, you can install from source by cloning the repository and running:
thomwolf's avatar
thomwolf committed
92

thomwolf's avatar
thomwolf committed
93
```bash
94
95
git clone https://github.com/huggingface/transformers
cd transformers
96
pip install .
thomwolf's avatar
thomwolf committed
97
```
VictorSanh's avatar
VictorSanh committed
98

99
100
101
102
When you update the repository, you should upgrade the transformers installation and its dependencies as follows:

```bash
git pull
103
pip install --upgrade .
104
105
```

106
107
108
109
### Run the examples

Examples are included in the repository but are not shipped with the library.

110
Therefore, in order to run the latest versions of the examples, you need to install from source, as described above.
111

112
Look at the [README](https://github.com/huggingface/transformers/blob/master/examples/README.md) for how to run examples.
thomwolf's avatar
thomwolf committed
113

114
### Tests
thomwolf's avatar
thomwolf committed
115

116
A series of tests are included for the library and for some example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
thomwolf's avatar
thomwolf committed
117

118
119
Depending on which framework is installed (TensorFlow 2.0 and/or PyTorch), the irrelevant tests will be skipped. Ensure that both frameworks are installed if you want to execute all tests.

120
Here's the easiest way to run tests for the library:
thomwolf's avatar
thomwolf committed
121

122
```bash
123
pip install -e ".[testing]"
124
make test
125
126
```

127
and for the examples:
128

thomwolf's avatar
thomwolf committed
129
```bash
130
pip install -e ".[testing]"
131
132
pip install -r examples/requirements.txt
make test-examples
thomwolf's avatar
thomwolf committed
133
```
thomwolf's avatar
thomwolf committed
134

135
For details, refer to the [contributing guide](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#tests).
136

137
138
139
140
### Do you want to run a Transformer model on a mobile device?

You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.

141
It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
142

143
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting!
144

thomwolf's avatar
thomwolf committed
145
146
## Model architectures

147
🤗 Transformers currently provides the following NLU/NLG architectures:
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155

1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
VictorSanh's avatar
VictorSanh committed
156
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
keskarnitish's avatar
keskarnitish committed
157
9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
158
10. **[CamemBERT](https://camembert-model.fr)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
Pierric Cistac's avatar
Pierric Cistac committed
159
11. **[ALBERT](https://github.com/google-research/ALBERT)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
thomwolf's avatar
thomwolf committed
160
12. **[T5](https://github.com/google-research/text-to-text-transfer-transformer)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
161
13. **[XLM-RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/xlmr)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
thomwolf's avatar
thomwolf committed
162
14. **[MMBT](https://github.com/facebookresearch/mmbt/)** (from Facebook), released together with the paper a [Supervised Multimodal Bitransformers for Classifying Images and Text](https://arxiv.org/pdf/1909.02950.pdf) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
Hang Le's avatar
Hang Le committed
163
164
165
15. **[FlauBERT](https://github.com/getalp/Flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
16. **[Other community models](https://huggingface.co/models)**, contributed by the [community](https://huggingface.co/users).
17. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
thomwolf's avatar
thomwolf committed
166
167
168

These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).

169
170
171
172
173
174
175
## Online demo

**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team at transformer.huggingface.co, is the official demo of this repo’s text generation capabilities.
You can use it to experiment with completions generated by `GPT2Model`, `TransfoXLModel`, and `XLNetModel`.

> “🦄 Write with transformer is to writing what calculators are to calculus.”

Julien Chaumond's avatar
Julien Chaumond committed
176
![write_with_transformer](https://transformer.huggingface.co/front/assets/thumbnail-large.png)
177

thomwolf's avatar
thomwolf committed
178
## Quick tour
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
thomwolf committed
180
Let's do a very quick overview of the model architectures in 🤗 Transformers. Detailed examples for each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [full documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
181
182
183

```python
import torch
184
from transformers import *
thomwolf's avatar
thomwolf committed
185

186
# Transformers has a unified API
187
# for 10 transformer architectures and 30 pretrained weights.
thomwolf's avatar
thomwolf committed
188
#          Model          | Tokenizer          | Pretrained weights shortcut
thomwolf's avatar
thomwolf committed
189
190
191
MODELS = [(BertModel,       BertTokenizer,       'bert-base-uncased'),
          (OpenAIGPTModel,  OpenAIGPTTokenizer,  'openai-gpt'),
          (GPT2Model,       GPT2Tokenizer,       'gpt2'),
keskarnitish's avatar
keskarnitish committed
192
          (CTRLModel,       CTRLTokenizer,       'ctrl'),
thomwolf's avatar
thomwolf committed
193
194
195
196
          (TransfoXLModel,  TransfoXLTokenizer,  'transfo-xl-wt103'),
          (XLNetModel,      XLNetTokenizer,      'xlnet-base-cased'),
          (XLMModel,        XLMTokenizer,        'xlm-mlm-enfr-1024'),
          (DistilBertModel, DistilBertTokenizer, 'distilbert-base-uncased'),
197
198
199
          (RobertaModel,    RobertaTokenizer,    'roberta-base'),
          (XLMRobertaModel, XLMRobertaTokenizer, 'xlm-roberta-base'),
         ]
thomwolf's avatar
thomwolf committed
200

thomwolf's avatar
thomwolf committed
201
202
# To use TensorFlow 2.0 versions of the models, simply prefix the class names with 'TF', e.g. `TFRobertaModel` is the TF 2.0 counterpart of the PyTorch model `RobertaModel`

thomwolf's avatar
thomwolf committed
203
204
205
206
207
208
209
# Let's encode some text in a sequence of hidden-states using each model:
for model_class, tokenizer_class, pretrained_weights in MODELS:
    # Load pretrained model/tokenizer
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)

    # Encode text
210
    input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)])  # Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
Thomas Wolf's avatar
Thomas Wolf committed
211
212
    with torch.no_grad():
        last_hidden_states = model(input_ids)[0]  # Models outputs are now tuples
thomwolf's avatar
thomwolf committed
213
214
215

# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
thomwolf's avatar
thomwolf committed
216
                      BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]
thomwolf's avatar
thomwolf committed
217

thomwolf's avatar
thomwolf committed
218
219
220
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
# and need to be trained on the down-stream task
221
222
pretrained_weights = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
thomwolf's avatar
thomwolf committed
223
224
for model_class in BERT_MODEL_CLASSES:
    # Load pretrained model/tokenizer
225
    model = model_class.from_pretrained(pretrained_weights)
thomwolf's avatar
thomwolf committed
226

Santosh Gupta's avatar
Santosh Gupta committed
227
228
229
230
231
232
    # Models can return full list of hidden-states & attentions weights at each layer
    model = model_class.from_pretrained(pretrained_weights,
                                        output_hidden_states=True,
                                        output_attentions=True)
    input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
    all_hidden_states, all_attentions = model(input_ids)[-2:]
thomwolf's avatar
thomwolf committed
233

Santosh Gupta's avatar
Santosh Gupta committed
234
235
236
    # Models are compatible with Torchscript
    model = model_class.from_pretrained(pretrained_weights, torchscript=True)
    traced_model = torch.jit.trace(model, (input_ids,))
thomwolf's avatar
thomwolf committed
237

Santosh Gupta's avatar
Santosh Gupta committed
238
239
240
241
242
    # Simple serialization for models and tokenizers
    model.save_pretrained('./directory/to/save/')  # save
    model = model_class.from_pretrained('./directory/to/save/')  # re-load
    tokenizer.save_pretrained('./directory/to/save/')  # save
    tokenizer = BertTokenizer.from_pretrained('./directory/to/save/')  # re-load
thomwolf's avatar
thomwolf committed
243

Santosh Gupta's avatar
Santosh Gupta committed
244
    # SOTA examples for GLUE, SQUAD, text generation...
thomwolf's avatar
thomwolf committed
245
246
```

thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
253
## Quick tour TF 2.0 training and PyTorch interoperability

Let's do a quick example of how a TensorFlow 2.0 model can be trained in 12 lines of code with 🤗 Transformers and then loaded in PyTorch for fast inspection/tests.

```python
import tensorflow as tf
import tensorflow_datasets
thomwolf's avatar
thomwolf committed
254
from transformers import *
thomwolf's avatar
thomwolf committed
255
256
257
258
259
260
261

# Load dataset, tokenizer, model from pretrained model/vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
data = tensorflow_datasets.load('glue/mrpc')

# Prepare dataset for GLUE as a tf.data.Dataset instance
thomwolf's avatar
thomwolf committed
262
263
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, max_length=128, task='mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, max_length=128, task='mrpc')
thomwolf's avatar
thomwolf committed
264
265
266
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
valid_dataset = valid_dataset.batch(64)

267
# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
thomwolf's avatar
thomwolf committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

# Train and evaluate using tf.keras.Model.fit()
history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
                    validation_data=valid_dataset, validation_steps=7)

# Load the TensorFlow model in PyTorch for inspection
model.save_pretrained('./save/')
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)

# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = "This research was consistent with his findings."
sentence_1 = "His findings were compatible with this research."
sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')

288
289
290
pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()
pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()

thomwolf's avatar
thomwolf committed
291
292
293
294
print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
```

thomwolf's avatar
thomwolf committed
295
## Quick tour of the fine-tuning/usage scripts
thomwolf's avatar
thomwolf committed
296

297
**Important**
298
299
300
301
Before running the fine-tuning scripts, please read the
[instructions](#run-the-examples) on how to
setup your environment to run the examples.

thomwolf's avatar
thomwolf committed
302
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
thomwolf's avatar
thomwolf committed
303

thomwolf's avatar
thomwolf committed
304
305
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
keskarnitish's avatar
keskarnitish committed
306
- `run_generation.py`: an example using GPT, GPT-2, CTRL, Transformer-XL and XLNet for conditional language generation
thomwolf's avatar
thomwolf committed
307
- other model-specific examples (see the documentation).
thomwolf's avatar
thomwolf committed
308

thomwolf's avatar
thomwolf committed
309
Here are three quick usage examples for these scripts:
thomwolf's avatar
thomwolf committed
310

thomwolf's avatar
thomwolf committed
311
### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
thomwolf's avatar
thomwolf committed
312

thomwolf's avatar
thomwolf committed
313
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
thomwolf's avatar
thomwolf committed
314

thomwolf's avatar
thomwolf committed
315
316
317
318
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
thomwolf's avatar
thomwolf committed
319

320
321
322
323
324
325
You should also install the additional packages required by the examples:

```shell
pip install -r ./examples/requirements.txt
```

thomwolf's avatar
thomwolf committed
326
327
328
```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
thomwolf's avatar
thomwolf committed
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
python ./examples/run_glue.py \
    --model_type bert \
    --model_name_or_path bert-base-uncased \
    --task_name $TASK_NAME \
    --do_train \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5 \
    --num_train_epochs 3.0 \
    --output_dir /tmp/$TASK_NAME/
thomwolf's avatar
thomwolf committed
344
345
```

thomwolf's avatar
thomwolf committed
346
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
thomwolf's avatar
thomwolf committed
347

thomwolf's avatar
thomwolf committed
348
The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
thomwolf's avatar
thomwolf committed
349

thomwolf's avatar
thomwolf committed
350
#### Fine-tuning XLNet model on the STS-B regression task
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
353
Parallel training is a simple way to use several GPUs (but is slower and less flexible than distributed training, see below).
thomwolf's avatar
thomwolf committed
354

thomwolf's avatar
thomwolf committed
355
356
```shell
export GLUE_DIR=/path/to/glue
thomwolf's avatar
thomwolf committed
357

thomwolf's avatar
thomwolf committed
358
359
360
361
python ./examples/run_glue.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train  \
362
    --do_eval   \
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
370
371
372
373
374
    --task_name=sts-b     \
    --data_dir=${GLUE_DIR}/STS-B  \
    --output_dir=./proc_data/sts-b-110   \
    --max_seq_length=128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --gradient_accumulation_steps=1 \
    --max_steps=1200  \
    --model_name=xlnet-large-cased   \
    --overwrite_output_dir   \
    --overwrite_cache \
    --warmup_steps=120
thomwolf's avatar
thomwolf committed
375
376
```

Anthony MOI's avatar
Anthony MOI committed
377
On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine. These hyper-parameters should result in a Pearson correlation coefficient of `+0.917` on the development set.
thomwolf's avatar
thomwolf committed
378

thomwolf's avatar
thomwolf committed
379
#### Fine-tuning Bert model on the MRPC classification task
thomwolf's avatar
thomwolf committed
380

thomwolf's avatar
thomwolf committed
381
This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
thomwolf's avatar
thomwolf committed
382

thomwolf's avatar
thomwolf committed
383
```bash
384
python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py   \
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name MRPC \
    --do_train   \
    --do_eval   \
    --do_lower_case   \
    --data_dir $GLUE_DIR/MRPC/   \
    --max_seq_length 128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5   \
    --num_train_epochs 3.0  \
    --output_dir /tmp/mrpc_output/ \
    --overwrite_output_dir   \
    --overwrite_cache \
thomwolf's avatar
thomwolf committed
400
401
```

thomwolf's avatar
thomwolf committed
402
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
403

thomwolf's avatar
thomwolf committed
404
405
406
407
408
409
410
```bash
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
thomwolf's avatar
thomwolf committed
411
412
```

thomwolf's avatar
thomwolf committed
413
### `run_squad.py`: Fine-tuning on SQuAD for question-answering
thomwolf's avatar
thomwolf committed
414

thomwolf's avatar
thomwolf committed
415
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
thomwolf's avatar
thomwolf committed
416

thomwolf's avatar
thomwolf committed
417
```bash
418
python -m torch.distributed.launch --nproc_per_node=8 ./examples/run_squad.py \
thomwolf's avatar
thomwolf committed
419
420
421
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
thomwolf's avatar
thomwolf committed
422
    --do_eval \
thomwolf's avatar
thomwolf committed
423
424
425
426
427
428
429
430
431
432
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ../models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \
thomwolf's avatar
thomwolf committed
433
434
```

thomwolf's avatar
thomwolf committed
435
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
436

thomwolf's avatar
thomwolf committed
437
438
439
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
thomwolf's avatar
thomwolf committed
440
441
```

thomwolf's avatar
thomwolf committed
442
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
443

keskarnitish's avatar
keskarnitish committed
444
### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet
445

thomwolf's avatar
thomwolf committed
446
A conditional generation script is also included to generate text from a prompt.
DenysNahurnyi's avatar
DenysNahurnyi committed
447
The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high-quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
448

thomwolf's avatar
thomwolf committed
449
Here is how to run the script with the small version of OpenAI GPT-2 model:
450

thomwolf's avatar
thomwolf committed
451
```shell
thomwolf's avatar
thomwolf committed
452
python ./examples/run_generation.py \
thomwolf's avatar
thomwolf committed
453
454
455
    --model_type=gpt2 \
    --length=20 \
    --model_name_or_path=gpt2 \
456
457
```

458
and from the Salesforce CTRL model:
keskarnitish's avatar
keskarnitish committed
459
460
461
462
```shell
python ./examples/run_generation.py \
    --model_type=ctrl \
    --length=20 \
463
    --model_name_or_path=ctrl \
keskarnitish's avatar
keskarnitish committed
464
465
466
467
    --temperature=0 \
    --repetition_penalty=1.2 \
```

468
469
## Quick tour of model sharing

Julien Chaumond's avatar
Julien Chaumond committed
470
Starting with `v2.2.2`, you can now upload and share your fine-tuned models with the community, using the <abbr title="Command-line interface">CLI</abbr> that's built-in to the library.
471
472
473
474
475
476
477
478
479
480
481
482
483
484

**First, create an account on [https://huggingface.co/join](https://huggingface.co/join)**. Then:

```shell
transformers-cli login
# log in using the same credentials as on huggingface.co
```
Upload your model:
```shell
transformers-cli upload ./path/to/pretrained_model/

# ^^ Upload folder containing weights/tokenizer/config
# saved via `.save_pretrained()`

Julien Chaumond's avatar
Julien Chaumond committed
485
transformers-cli upload ./config.json [--filename folder/foobar.json]
486
487

# ^^ Upload a single file
Julien Chaumond's avatar
Julien Chaumond committed
488
# (you can optionally override its filename, which can be nested inside a folder)
489
490
```

Julien Chaumond's avatar
Julien Chaumond committed
491
Your model will then be accessible through its identifier, a concatenation of your username and the folder name above:
492
```python
Julien Chaumond's avatar
Julien Chaumond committed
493
"username/pretrained_model"
494
495
```

496
497
498
499
**Please add a README.md model card** to the repo under `model_cards/` with: model description, training params (dataset, preprocessing, hyperparameters), evaluation results, intended uses & limitations, etc.

Your model now has a page on huggingface.co/models 🔥

500
501
Anyone can load it from code:
```python
Julien Chaumond's avatar
Julien Chaumond committed
502
503
tokenizer = AutoTokenizer.from_pretrained("username/pretrained_model")
model = AutoModel.from_pretrained("username/pretrained_model")
504
505
```

506
List all your files on S3:
507
```shell
Julien Chaumond's avatar
Julien Chaumond committed
508
transformers-cli s3 ls
509
510
```

511
You can also delete unneeded files:
Julien Chaumond's avatar
Julien Chaumond committed
512
513
514
515
516

```shell
transformers-cli s3 rm
```

517
518
519
## Quick tour of pipelines

New in version `v2.3`: `Pipeline` are high-level objects which automatically handle tokenization, running your data through a transformers model
520
and outputting the result in a structured object.
521
522

You can create `Pipeline` objects for the following down-stream tasks:
thomwolf's avatar
thomwolf committed
523

524
525
 - `feature-extraction`: Generates a tensor representation for the input sequence
 - `ner`: Generates named entity mapping for each word in the input sequence.
526
 - `sentiment-analysis`: Gives the polarity (positive / negative) of the whole input sequence.
Julien Chaumond's avatar
Julien Chaumond committed
527
528
529
 - `text-classification`: Initialize a `TextClassificationPipeline` directly, or see `sentiment-analysis` for an example.
 - `question-answering`: Provided some context and a question refering to the context, it will extract the answer to the question in the context.
 - `fill-mask`: Takes an input sequence containing a masked token (e.g. `<mask>`) and return list of most probable filled sequences, with their probabilities.
530
531
532
533
534
535
536
537
538
539
540
541

```python
from transformers import pipeline

# Allocate a pipeline for sentiment-analysis
nlp = pipeline('sentiment-analysis')
nlp('We are very happy to include pipeline into the transformers repository.')
>>> {'label': 'POSITIVE', 'score': 0.99893874}

# Allocate a pipeline for question-answering
nlp = pipeline('question-answering')
nlp({
542
    'question': 'What is the name of the repository ?',
543
544
545
546
547
    'context': 'Pipeline have been included in the huggingface/transformers repository'
})
>>> {'score': 0.28756016668193496, 'start': 35, 'end': 59, 'answer': 'huggingface/transformers'}
```

thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
555
556
557
558
559
560
## Migrating from pytorch-transformers to transformers

Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`.

### Positional order of some models' keywords inputs (`attention_mask`, `token_type_ids`...) changed

To be able to use Torchscript (see #1010, #1204 and #1195) the specific order of some models **keywords inputs** (`attention_mask`, `token_type_ids`...) has been changed.

If you used to call the models with keyword names for keyword arguments, e.g. `model(inputs_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)`, this should not cause any change.

If you used to call the models with positional inputs for keyword arguments, e.g. `model(inputs_ids, attention_mask, token_type_ids)`, you may have to double check the exact order of input arguments.


561
## Migrating from pytorch-pretrained-bert to transformers
thomwolf's avatar
thomwolf committed
562

thomwolf's avatar
thomwolf committed
563
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`.
thomwolf's avatar
thomwolf committed
564
565
566

### Models always output `tuples`

567
The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that every model's forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
thomwolf's avatar
thomwolf committed
568

DenysNahurnyi's avatar
DenysNahurnyi committed
569
The exact content of the tuples for each model is detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
570
571
572

In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.

573
Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
thomwolf's avatar
thomwolf committed
574
575
576
577
578
579
580
581

```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)

582
# Now just use this line in transformers to extract the loss from the output tuple:
thomwolf's avatar
thomwolf committed
583
584
585
outputs = model(input_ids, labels=labels)
loss = outputs[0]

586
# In transformers you can also have access to the logits:
thomwolf's avatar
thomwolf committed
587
588
loss, logits = outputs[:2]

589
# And even the attention weights if you configure the model to output them (and other outputs too, see the docstrings and documentation)
thomwolf's avatar
thomwolf committed
590
591
592
593
594
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```

595
596
597
598
### Using hidden states

By enabling the configuration option `output_hidden_states`, it was possible to retrieve the last hidden states of the encoder. In `pytorch-transformers` as well as `transformers` the return value has changed slightly: `all_hidden_states` now also includes the hidden state of the embeddings in addition to those of the encoding layers. This allows users to easily access the embeddings final state.

thomwolf's avatar
thomwolf committed
599
600
### Serialization

DenysNahurnyi's avatar
DenysNahurnyi committed
601
Breaking change in the `from_pretrained()` method:
602

Christopher Goh's avatar
Christopher Goh committed
603
1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them, don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
604

Christopher Goh's avatar
Christopher Goh committed
605
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead, which can break derived model classes built based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model's `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
606

thomwolf's avatar
typos  
thomwolf committed
607
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
thomwolf's avatar
thomwolf committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

Here is an example:

```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)

### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')

### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```

### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules

634
635
636
637
638
639
640
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:

- it only implements weights decay correction,
- schedules are now externals (see below),
- gradient clipping is now also external (see below).

The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
thomwolf's avatar
thomwolf committed
641
642
643
644
645
646
647
648

The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.

Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:

```python
# Parameters:
lr = 1e-3
649
max_grad_norm = 1.0
650
num_training_steps = 1000
thomwolf's avatar
thomwolf committed
651
num_warmup_steps = 100
652
warmup_proportion = float(num_warmup_steps) / float(num_training_steps)  # 0.1
thomwolf's avatar
thomwolf committed
653
654

### Previously BertAdam optimizer was instantiated like this:
655
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_training_steps)
thomwolf's avatar
thomwolf committed
656
657
658
659
660
661
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    optimizer.step()

662
### In Transformers, optimizer and schedules are splitted and instantiated like this:
thomwolf's avatar
thomwolf committed
663
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
664
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)  # PyTorch scheduler
thomwolf's avatar
thomwolf committed
665
666
### and used like this:
for batch in train_data:
667
    model.train()
thomwolf's avatar
thomwolf committed
668
669
    loss = model(batch)
    loss.backward()
670
    torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)  # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
thomwolf's avatar
thomwolf committed
671
    optimizer.step()
thomwolf's avatar
thomwolf committed
672
    scheduler.step()
thomwolf's avatar
thomwolf committed
673
    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
674
675
```

thomwolf's avatar
thomwolf committed
676
## Citation
thomwolf's avatar
thomwolf committed
677

thomwolf's avatar
thomwolf committed
678
679
We now have a paper you can cite for the 🤗 Transformers library:
```
thomwolf's avatar
thomwolf committed
680
681
682
683
684
685
@article{Wolf2019HuggingFacesTS,
  title={HuggingFace's Transformers: State-of-the-art Natural Language Processing},
  author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and R'emi Louf and Morgan Funtowicz and Jamie Brew},
  journal={ArXiv},
  year={2019},
  volume={abs/1910.03771}
thomwolf's avatar
thomwolf committed
686
687
}
```