Commit 43e0e8fa authored by thomwolf's avatar thomwolf
Browse files

updates to readme and doc

parent f31154cb
# 👾 PyTorch-Transformers # 👾 PyTorch-Transformers
[![CircleCI](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT) [![CircleCI](https://circleci.com/gh/huggingface/pytorch-transformers.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-transformers)
PyTorch-Transformers is a library of state-of-the-art pre-trained models for Natural Language Processing (NLP). PyTorch-Transformers is a library of state-of-the-art pre-trained models for Natural Language Processing (NLP).
The library currently contains PyTorch implementations, pre-trained model weights, usage scripts and conversion utilities for the following models: The library currently contains PyTorch implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
- **[Google's BERT model](https://github.com/google-research/bert)** released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
- **[OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm)** released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- **[OpenAI's GPT-2 model](https://blog.openai.com/better-language-models/)** released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
- **[Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl)** released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
- **[Google/CMU's XLNet model](https://github.com/zihangdai/xlnet/)** released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- **[Facebook's XLM model](https://github.com/facebookresearch/XLM/)** released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](#documentation). These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/pytorch-transformers/examples.html).
| Section | Description | | Section | Description |
|-|-| |-|-|
...@@ -21,7 +21,7 @@ These implementations have been tested on several datasets (see the example scri ...@@ -21,7 +21,7 @@ These implementations have been tested on several datasets (see the example scri
| [Quick tour: Usage](#quick-tour-usage) | Tokenizers & models usage: Bert and GPT-2 | | [Quick tour: Usage](#quick-tour-usage) | Tokenizers & models usage: Bert and GPT-2 |
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation | | [Quick tour: Fine-tuning/usage scripts](#quick-tour-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers | | [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers |
| [Documentation](#documentation) | Full API documentation and more | | [Documentation](https://huggingface.co/pytorch-transformers/) | Full API documentation and more |
## Installation ## Installation
...@@ -202,13 +202,14 @@ Examples for each model class of each model architecture (Bert, GPT, GPT-2, Tran ...@@ -202,13 +202,14 @@ Examples for each model class of each model architecture (Bert, GPT, GPT-2, Tran
The library comprises several example scripts with SOTA performances for NLU and NLG tasks: The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
- fine-tuning Bert/XLNet/XLM with a *sequence-level classifier* on nine different GLUE tasks, - `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- fine-tuning Bert/XLNet/XLM with a *token-level classifier* on the question answering dataset SQuAD 2.0, and - `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
- using GPT/GPT-2/Transformer-XL and XLNet for conditional language generation. - `run_generation.py`: an example using GPT, GPT-2, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
Here are three quick usage examples for these scripts: Here are three quick usage examples for these scripts:
### Fine-tuning for sequence classification: GLUE tasks examples ### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems. The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
...@@ -302,7 +303,7 @@ Training with these hyper-parameters gave us the following results: ...@@ -302,7 +303,7 @@ Training with these hyper-parameters gave us the following results:
loss = 0.07231863956341798 loss = 0.07231863956341798
``` ```
### Fine-tuning for question-answering: SQuAD example ### `run_squad.py`: Fine-tuning on SQuAD for question-answering
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD: This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
...@@ -333,7 +334,7 @@ python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncase ...@@ -333,7 +334,7 @@ python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncase
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`. This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
### Conditional generation: Text generation with GPT, GPT-2, Transformer-XL and XLNet ### `run_generation.py`: Text generation with GPT, GPT-2, Transformer-XL and XLNet
A conditional generation script is also included to generate text from a prompt. A conditional generation script is also included to generate text from a prompt.
The generation script include the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer). The generation script include the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
...@@ -347,10 +348,6 @@ python ./examples/run_glue.py \ ...@@ -347,10 +348,6 @@ python ./examples/run_glue.py \
--model_name_or_path=gpt2 \ --model_name_or_path=gpt2 \
``` ```
## Documentation
The full documentation is available at https://huggingface.co/pytorch-transformers/.
## Migrating from pytorch-pretrained-bert to pytorch-transformers ## Migrating from pytorch-pretrained-bert to pytorch-transformers
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers` Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers`
......
Converting Tensorflow Models Converting Tensorflow Checkpoints
================================================ ================================================
A command-line interface is provided to convert a TensorFlow checkpoint in a PyTorch dump of the ``BertForPreTraining`` class (for BERT) or NumPy checkpoint in a PyTorch dump of the ``OpenAIGPTModel`` class (for OpenAI GPT). A command-line interface is provided to convert a TensorFlow checkpoint in a PyTorch dump of the ``BertForPreTraining`` class (for BERT) or NumPy checkpoint in a PyTorch dump of the ``OpenAIGPTModel`` class (for OpenAI GPT).
......
This diff is collapsed.
...@@ -6,43 +6,47 @@ This repo was tested on Python 2.7 and 3.5+ (examples are tested only on python ...@@ -6,43 +6,47 @@ This repo was tested on Python 2.7 and 3.5+ (examples are tested only on python
With pip With pip
^^^^^^^^ ^^^^^^^^
PyTorch pretrained bert can be installed by pip as follows: PyTorch pretrained bert can be installed with pip as follows:
.. code-block:: bash .. code-block:: bash
pip install pytorch-pretrained-bert pip install pytorch-transformers
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` : From source
^^^^^^^^^^^
.. code-block:: bash Clone the repository and instal locally:
pip install spacy ftfy==4.4.3 .. code-block:: bash
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry). git clone https://github.com/huggingface/pytorch-transformers.git
cd pytorch-transformers
pip install [--editable] .
From source
^^^^^^^^^^^
Clone the repository and run: Tests
^^^^^
.. code-block:: bash An extensive test suite is included for the library and the example scripts. Library tests can be found in the `tests folder <https://github.com/huggingface/pytorch-transformers/tree/master/pytorch_transformers/tests>`_ and examples tests in the `examples folder <https://github.com/huggingface/pytorch-transformers/tree/master/examples>`_.
pip install [--editable] . These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
Here also, if you want to reproduce the original tokenization process of the ``OpenAI GPT`` model, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` : You can run the tests from the root of the cloned repository with the commands:
.. code-block:: bash .. code-block:: bash
pip install spacy ftfy==4.4.3 python -m pytest -sv ./pytorch_transformers/tests/
python -m spacy download en python -m pytest -sv ./examples/
Again, if you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage).
A series of tests is included in the `tests folder <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/tests>`_ and can be run using ``pytest`` (install pytest if needed: ``pip install pytest``\ ). OpenAI GPT original tokenization workflow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can run the tests with the command: If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` :
.. code-block:: bash .. code-block:: bash
python -m pytest -sv tests/ pip install spacy ftfy==4.4.3
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
# Migration # Migrating from pytorch-pretrained-bert
\ No newline at end of file
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers`
### Models always output `tuples`
The main breaking change when migrating from `pytorch-pretrained-bert` to `pytorch-transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/pytorch-transformers/).
In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
Here is a `pytorch-pretrained-bert` to `pytorch-transformers` conversion example for a `BertForSequenceClassification` classification model:
```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)
# Now just use this line in pytorch-transformers to extract the loss from the output tuple:
outputs = model(input_ids, labels=labels)
loss = outputs[0]
# In pytorch-transformers you can also have access to the logits:
loss, logits = outputs[:2]
# And even the attention weigths if you configure the model to output them (and other outputs too, see the docstrings and documentation)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```
### Serialization
While not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other seralization method before.
Here is an example:
```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)
### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')
### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```
### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer.
The new optimizer `AdamW` matches PyTorch `Adam` optimizer API.
The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.
Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:
```python
# Parameters:
lr = 1e-3
num_total_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps) # 0.1
### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
### and used like this:
for batch in train_data:
loss = model(batch)
loss.backward()
optimizer.step()
### In PyTorch-Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps) # PyTorch scheduler
### and used like this:
for batch in train_data:
loss = model(batch)
loss.backward()
scheduler.step()
optimizer.step()
```
# Philosophy
\ No newline at end of file
Pretrained models
================================================
Here is the full list of the currently provided pretrained models together with a short presentation of each model.
+===============+============================================================+===========================+
| Architecture | Shortcut name | Details of the model |
+===============+============================================================+===========================+
| | ``bert-base-uncased`` | 12-layer, 768-hidden, 12-heads, 110M parameters
| | | Trained on lower-cased English text |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-uncased`` | 24-layer, 1024-hidden, 16-heads, 340M parameters
| | | Trained on lower-cased English text |
| +------------------------------------------------------------+---------------------------+
| | ``bert-base-cased`` | 12-layer, 768-hidden, 12-heads, 110M parameters
| | | Trained on cased English text |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-cased`` | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | Trained on cased English text |
| +------------------------------------------------------------+---------------------------+
| | ``bert-base-multilingual-uncased`` | (Original, not recommended) 12-layer, 768-hidden, 12-heads, 110M parameters
| | | Trained on lower-cased text in the top 102 languages with the largest Wikipedias
| | | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-base-multilingual-cased`` | (New, **recommended**) 12-layer, 768-hidden, 12-heads, 110M parameters |
| | | Trained on cased text in the top 104 languages with the largest Wikipedias
| | | (see `details <https://github.com/google-research/bert/blob/master/multilingual.md>`_) |
| +------------------------------------------------------------+---------------------------+
| BERT | ``bert-base-chinese`` | 12-layer, 768-hidden, 12-heads, 110M parameters |
| | | Trained on cased Chinese Simplified and Traditional text |
| +------------------------------------------------------------+---------------------------+
| | ``bert-base-german-cased`` | 12-layer, 768-hidden, 12-heads, 110M parameters |
| | | Trained on cased German text by Deepset.ai |
| | | (see `details on deepset.ai website <https://deepset.ai/german-bert>`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-uncased-whole-word-masking`` | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | Trained on lower-cased English text using Whole-Word-Masking |
| | | (see `details <https://github.com/google-research/bert/#bert>`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-cased-whole-word-masking`` | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | Trained on cased English text using Whole-Word-Masking |
| | | (see `details <https://github.com/google-research/bert/#bert>`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-uncased-whole-word-masking-finetuned-squad`` | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | The ``bert-large-uncased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see details of fine-tuning in the `example section`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-large-cased-whole-word-masking-finetuned-squad`` | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | The ``bert-large-cased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/pytorch-transformers/examples.html>`_) |
| +------------------------------------------------------------+---------------------------+
| | ``bert-base-cased-finetuned-mrpc`` | 12-layer, 768-hidden, 12-heads, 110M parameters |
| | | The ``bert-base-cased`` model fine-tuned on MRPC |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/pytorch-transformers/examples.html>`_) |
+---------------+------------------------------------------------------------+---------------------------+
| GPT | Cells may span columns. |
+---------------+----------------------------------------------------------------------------------------+
.. <https://huggingface.co/pytorch-transformers/examples.html>`_
\ No newline at end of file
# Quickstart
## Main concepts
## Quick tour: Usage
Here are two quick-start examples showcasing a few `Bert` and `GPT2` classes and pre-trained models.
See package reference for examples for each model classe.
### BERT example
First let's prepare a tokenized input from a text string using `BertTokenizer`
```python
import torch
from pytorch_transformers import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Tokenize input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
```
Let's see how we can use `BertModel` to encode our inputs in hidden-states:
```python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
# See the models docstrings for the detail of the inputs
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
# PyTorch-Transformers models always output tuples.
# See the models docstrings for the detail of all the outputs
# In our case, the first element is the hidden state of the last layer of the Bert model
encoded_layers = outputs[0]
# We have encoded our input sequence in a FloatTensor of shape (batch size, sequence length, model hidden dimension)
assert tuple(encoded_layers.shape) == (1, len(indexed_tokens), model.config.hidden_size)
```
And how to use `BertForMaskedLM` to predict a masked token:
```python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor, token_type_ids=segments_tensors)
predictions = outputs[0]
# confirm we were able to predict 'henson'
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'henson'
```
### OpenAI GPT-2
Here is a quick-start example using `GPT2Tokenizer` and `GPT2LMHeadModel` class with OpenAI's pre-trained model to predict the next token from a text prompt.
First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
```python
import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode a text inputs
text = "Who was Jim Henson ? Jim Henson was a"
indexed_tokens = tokenizer.encode(text)
# Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])
```
Let's see how to use `GPT2LMHeadModel` to generate the next token following our text:
```python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
# get the predicted next sub-word (in our case, the word 'man')
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
assert predicted_text == 'Who was Jim Henson? Jim Henson was a man'
```
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).
Usage
================================================
BERT
^^^^
Here is a quick-start example using ``BertTokenizer``\ , ``BertModel`` and ``BertForMaskedLM`` class with Google AI's pre-trained ``Bert base uncased`` model. See the `doc section <./model_doc/overview.html>`_ below for all the details on these classes.
First let's prepare a tokenized input with ``BertTokenizer``
.. code-block:: python
import torch
from pytorch_transformers import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Tokenized input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
Let's see how to use ``BertModel`` to get hidden states
.. code-block:: python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
encoded_layers, _ = model(tokens_tensor, segments_tensors)
# We have a hidden states for each of the 12 layers in model bert-base-uncased
assert len(encoded_layers) == 12
And how to use ``BertForMaskedLM``
.. code-block:: python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
predictions = model(tokens_tensor, segments_tensors)
# confirm we were able to predict 'henson'
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'henson'
OpenAI GPT
^^^^^^^^^^
Here is a quick-start example using ``OpenAIGPTTokenizer``\ , ``OpenAIGPTModel`` and ``OpenAIGPTLMHeadModel`` class with OpenAI's pre-trained model. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
First let's prepare a tokenized input with ``OpenAIGPTTokenizer``
.. code-block:: python
import torch
from pytorch_transformers import OpenAIGPTTokenizer, OpenAIGPTModel, OpenAIGPTLMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
# Tokenized input
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
tokenized_text = tokenizer.tokenize(text)
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
Let's see how to use ``OpenAIGPTModel`` to get hidden states
.. code-block:: python
# Load pre-trained model (weights)
model = OpenAIGPTModel.from_pretrained('openai-gpt')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
hidden_states = model(tokens_tensor)
And how to use ``OpenAIGPTLMHeadModel``
.. code-block:: python
# Load pre-trained model (weights)
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
predictions = model(tokens_tensor)
# get the predicted last token
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == '.</w>'
And how to use ``OpenAIGPTDoubleHeadsModel``
.. code-block:: python
# Load pre-trained model (weights)
model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
model.eval()
# Prepare tokenized input
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text2 = tokenizer.tokenize(text2)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Predict hidden states features for each layer
with torch.no_grad():
lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)
Transformer-XL
^^^^^^^^^^^^^^
Here is a quick-start example using ``TransfoXLTokenizer``\ , ``TransfoXLModel`` and ``TransfoXLModelLMHeadModel`` class with the Transformer-XL model pre-trained on WikiText-103. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
First let's prepare a tokenized input with ``TransfoXLTokenizer``
.. code-block:: python
import torch
from pytorch_transformers import TransfoXLTokenizer, TransfoXLModel, TransfoXLLMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary from wikitext 103)
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
# Tokenized input
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
tokenized_text_1 = tokenizer.tokenize(text_1)
tokenized_text_2 = tokenizer.tokenize(text_2)
# Convert token to vocabulary indices
indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
# Convert inputs to PyTorch tensors
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
Let's see how to use ``TransfoXLModel`` to get hidden states
.. code-block:: python
# Load pre-trained model (weights)
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
with torch.no_grad():
# Predict hidden states features for each layer
hidden_states_1, mems_1 = model(tokens_tensor_1)
# We can re-use the memory cells in a subsequent call to attend a longer context
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
And how to use ``TransfoXLLMHeadModel``
.. code-block:: python
# Load pre-trained model (weights)
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
with torch.no_grad():
# Predict all tokens
predictions_1, mems_1 = model(tokens_tensor_1)
# We can re-use the memory cells in a subsequent call to attend a longer context
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
# get the predicted last token
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'who'
OpenAI GPT-2
^^^^^^^^^^^^
Here is a quick-start example using ``GPT2Tokenizer``\ , ``GPT2Model`` and ``GPT2LMHeadModel`` class with OpenAI's pre-trained model. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
First let's prepare a tokenized input with ``GPT2Tokenizer``
.. code-block:: python
import torch
from pytorch_transformers import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode some inputs
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
# Convert inputs to PyTorch tensors
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
Let's see how to use ``GPT2Model`` to get hidden states
.. code-block:: python
# Load pre-trained model (weights)
model = GPT2Model.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
hidden_states_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example).
hidden_states_2, past = model(tokens_tensor_2, past=past)
And how to use ``GPT2LMHeadModel``
.. code-block:: python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
predictions_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example).
predictions_2, past = model(tokens_tensor_2, past=past)
# get the predicted last token
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_token = tokenizer.decode([predicted_index])
And how to use ``GPT2DoubleHeadsModel``
.. code-block:: python
# Load pre-trained model (weights)
model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
model.eval()
# Prepare tokenized input
text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
tokenized_text1 = tokenizer.tokenize(text1)
tokenized_text2 = tokenizer.tokenize(text2)
indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Predict hidden states features for each layer
with torch.no_grad():
lm_logits, multiple_choice_logits, past = model(tokens_tensor, mc_token_ids)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment