README.md 19.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# 馃懢 PyTorch-Transformers
VictorSanh's avatar
VictorSanh committed
2

thomwolf's avatar
thomwolf committed
3
[![CircleCI](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-pretrained-BERT)
Julien Chaumond's avatar
Julien Chaumond committed
4

thomwolf's avatar
indeed  
thomwolf committed
5
6
7
PyTorch-Transformers is a library of state-of-the-art pre-trained models for Natural Language Processing (NLP).

The library currently contains PyTorch implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
VictorSanh's avatar
VictorSanh committed
8

thomwolf's avatar
thomwolf committed
9
- **[Google's BERT model](https://github.com/google-research/bert)** released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
thomwolf's avatar
thomwolf committed
10
- **[OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm)** released  with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
thomwolf's avatar
thomwolf committed
11
- **[OpenAI's GPT-2 model](https://blog.openai.com/better-language-models/)** released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
thomwolf's avatar
indeed  
thomwolf committed
12
- **[Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl)** released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
thomwolf's avatar
thomwolf committed
13
14
- **[Google/CMU's XLNet model](https://github.com/zihangdai/xlnet/)** released with the paper [鈥媂LNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- **[Facebook's XLM model](https://github.com/facebookresearch/XLM/)** released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
thomwolf's avatar
thomwolf committed
15

thomwolf's avatar
thomwolf committed
16
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](#documentation).
17

thomwolf's avatar
thomwolf committed
18
| Section | Description |
thomwolf's avatar
thomwolf committed
19
|-|-|
thomwolf's avatar
thomwolf committed
20
| [Installation](#installation) | How to install the package |
thomwolf's avatar
thomwolf committed
21
| [Quick tour: Usage](#quick-tour-usage) | Tokenizers & models usage: Bert and GPT-2 |
thomwolf's avatar
thomwolf committed
22
23
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers |
thomwolf's avatar
thomwolf committed
24
| [Documentation](#documentation) | Full API documentation and more |
thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
## Installation
VictorSanh's avatar
VictorSanh committed
27

thomwolf's avatar
thomwolf committed
28
This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 0.4.1 to 1.1.0
VictorSanh's avatar
VictorSanh committed
29

thomwolf's avatar
thomwolf committed
30
### With pip
thomwolf's avatar
thomwolf committed
31

thomwolf's avatar
thomwolf committed
32
PyTorch-Transformers can be installed by pip as follows:
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
```bash
thomwolf's avatar
thomwolf committed
35
pip install pytorch-transformers
thomwolf's avatar
thomwolf committed
36
```
VictorSanh's avatar
VictorSanh committed
37

thomwolf's avatar
thomwolf committed
38
### From source
thomwolf's avatar
thomwolf committed
39
40

Clone the repository and run:
thomwolf's avatar
thomwolf committed
41

thomwolf's avatar
thomwolf committed
42
43
44
```bash
pip install [--editable] .
```
VictorSanh's avatar
VictorSanh committed
45

thomwolf's avatar
thomwolf committed
46
### Tests
thomwolf's avatar
thomwolf committed
47

thomwolf's avatar
thomwolf committed
48
A series of tests is included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/pytorch-transformers/tree/master/pytorch_transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/pytorch-transformers/tree/master/examples).
thomwolf's avatar
thomwolf committed
49

thomwolf's avatar
thomwolf committed
50
These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
thomwolf's avatar
thomwolf committed
51

thomwolf's avatar
thomwolf committed
52
You can run the tests from the root of the cloned repository with the commands:
thomwolf's avatar
thomwolf committed
53

thomwolf's avatar
thomwolf committed
54
55
56
57
```bash
python -m pytest -sv ./pytorch_transformers/tests/
python -m pytest -sv ./examples/
```
thomwolf's avatar
thomwolf committed
58

thomwolf's avatar
thomwolf committed
59
## Quick tour: Usage
thomwolf's avatar
thomwolf committed
60

thomwolf's avatar
thomwolf committed
61
Here are two quick-start examples using `Bert` and `GPT2` with pre-trained models.
thomwolf's avatar
thomwolf committed
62

thomwolf's avatar
thomwolf committed
63
See the [documentation](#documentation) for the details of all the models and classes.
thomwolf's avatar
thomwolf committed
64

thomwolf's avatar
thomwolf committed
65
### BERT example
thomwolf's avatar
thomwolf committed
66

thomwolf's avatar
thomwolf committed
67
First let's prepare a tokenized input from a text string using `BertTokenizer`
thomwolf's avatar
thomwolf committed
68
69
70

```python
import torch
thomwolf's avatar
thomwolf committed
71
from pytorch_transformers import BertTokenizer, BertModel, BertForMaskedLM
thomwolf's avatar
thomwolf committed
72

thomwolf's avatar
thomwolf committed
73
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
thomwolf's avatar
thomwolf committed
74
75
76
import logging
logging.basicConfig(level=logging.INFO)

thomwolf's avatar
thomwolf committed
77
# Load pre-trained model tokenizer (vocabulary)
thomwolf's avatar
thomwolf committed
78
79
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

thomwolf's avatar
thomwolf committed
80
# Tokenize input
thomwolf's avatar
thomwolf committed
81
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
thomwolf's avatar
thomwolf committed
82
tokenized_text = tokenizer.tokenize(text)
thomwolf's avatar
thomwolf committed
83
84

# Mask a token that we will try to predict back with `BertForMaskedLM`
Liang Niu's avatar
Liang Niu committed
85
masked_index = 8
thomwolf's avatar
thomwolf committed
86
tokenized_text[masked_index] = '[MASK]'
thomwolf's avatar
thomwolf committed
87
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
thomwolf's avatar
thomwolf committed
88
89
90

# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
thomwolf's avatar
thomwolf committed
91
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
thomwolf's avatar
thomwolf committed
92
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
thomwolf's avatar
thomwolf committed
93

thomwolf's avatar
thomwolf committed
94
# Convert inputs to PyTorch tensors
thomwolf's avatar
thomwolf committed
95
96
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
thomwolf's avatar
thomwolf committed
97
98
```

thomwolf's avatar
thomwolf committed
99
Let's see how we can use `BertModel` to encode our inputs in hidden-states:
thomwolf's avatar
thomwolf committed
100
101
102
103

```python
# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
104
105
106

# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
thomwolf's avatar
thomwolf committed
107
model.eval()
thomwolf's avatar
thomwolf committed
108

thomwolf's avatar
thomwolf committed
109
110
111
112
113
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
114
# Predict hidden states features for each layer
thomwolf's avatar
thomwolf committed
115
with torch.no_grad():
thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
    # See the models docstrings for the detail of the inputs
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
    # PyTorch-Transformers models always output tuples.
    # See the models docstrings for the detail of all the outputs
    # In our case, the first element is the hidden state of the last layer of the Bert model
    encoded_layers = outputs[0]
# We have encoded our input sequence in a FloatTensor of shape (batch size, sequence length, model hidden dimension)
assert tuple(encoded_layers.shape) == (1, len(indexed_tokens), model.config.hidden_size)
thomwolf's avatar
thomwolf committed
124
125
```

thomwolf's avatar
thomwolf committed
126
And how to use `BertForMaskedLM` to predict a masked token:
thomwolf's avatar
thomwolf committed
127
128
129
130
131
132

```python
# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()

thomwolf's avatar
thomwolf committed
133
134
135
136
137
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
138
# Predict all tokens
thomwolf's avatar
thomwolf committed
139
with torch.no_grad():
thomwolf's avatar
thomwolf committed
140
141
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
    predictions = outputs[0]
thomwolf's avatar
thomwolf committed
142

thomwolf's avatar
thomwolf committed
143
# confirm we were able to predict 'henson'
thomwolf's avatar
thomwolf committed
144
predicted_index = torch.argmax(predictions[0, masked_index]).item()
145
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
thomwolf's avatar
thomwolf committed
146
147
148
assert predicted_token == 'henson'
```

thomwolf's avatar
thomwolf committed
149
### OpenAI GPT-2
thomwolf's avatar
thomwolf committed
150

thomwolf's avatar
thomwolf committed
151
Here is a quick-start example using `GPT2Tokenizer` and `GPT2LMHeadModel` class with OpenAI's pre-trained model to predict the next token from a text prompt.
thomwolf's avatar
thomwolf committed
152

thomwolf's avatar
thomwolf committed
153
First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
thomwolf's avatar
thomwolf committed
154
155
156

```python
import torch
thomwolf's avatar
thomwolf committed
157
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel
thomwolf's avatar
thomwolf committed
158

thomwolf's avatar
thomwolf committed
159
160
161
162
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

thomwolf's avatar
thomwolf committed
163
# Load pre-trained model tokenizer (vocabulary)
thomwolf's avatar
thomwolf committed
164
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
165

thomwolf's avatar
thomwolf committed
166
# Encode a text inputs
thomwolf's avatar
thomwolf committed
167
168
text = "Who was Jim Henson ? Jim Henson was a"
indexed_tokens = tokenizer.encode(text)
thomwolf's avatar
thomwolf committed
169

thomwolf's avatar
thomwolf committed
170
# Convert indexed tokens in a PyTorch tensor
thomwolf's avatar
thomwolf committed
171
172
173
tokens_tensor = torch.tensor([indexed_tokens])
```

thomwolf's avatar
thomwolf committed
174
Let's see how to use `GPT2LMHeadModel` to generate the next token following our text:
thomwolf's avatar
thomwolf committed
175
176
177

```python
# Load pre-trained model (weights)
thomwolf's avatar
thomwolf committed
178
model = GPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
thomwolf committed
180
181
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
thomwolf's avatar
thomwolf committed
182
183
model.eval()

thomwolf's avatar
thomwolf committed
184
185
186
187
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')

thomwolf's avatar
thomwolf committed
188
# Predict all tokens
thomwolf's avatar
thomwolf committed
189
with torch.no_grad():
thomwolf's avatar
thomwolf committed
190
191
    outputs = model(tokens_tensor)
    predictions = outputs[0]
thomwolf's avatar
thomwolf committed
192

thomwolf's avatar
thomwolf committed
193
# get the predicted next sub-word (in our case, the word 'man')
thomwolf's avatar
thomwolf committed
194
predicted_index = torch.argmax(predictions[0, -1, :]).item()
thomwolf's avatar
thomwolf committed
195
196
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
assert predicted_text == 'Who was Jim Henson? Jim Henson was a man'
thomwolf's avatar
thomwolf committed
197
198
```

thomwolf's avatar
thomwolf committed
199
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).
thomwolf's avatar
thomwolf committed
200

thomwolf's avatar
thomwolf committed
201
## Quick tour: Fine-tuning/usage scripts
thomwolf's avatar
thomwolf committed
202

thomwolf's avatar
thomwolf committed
203
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
thomwolf's avatar
thomwolf committed
204

thomwolf's avatar
thomwolf committed
205
206
207
- fine-tuning Bert/XLNet/XLM with a *sequence-level classifier* on nine different GLUE tasks,
- fine-tuning Bert/XLNet/XLM with a *token-level classifier* on the question answering dataset SQuAD 2.0, and
- using GPT/GPT-2/Transformer-XL and XLNet for conditional language generation.
thomwolf's avatar
thomwolf committed
208

thomwolf's avatar
thomwolf committed
209
Here are three quick usage examples for these scripts:
thomwolf's avatar
thomwolf committed
210

thomwolf's avatar
thomwolf committed
211
### Fine-tuning for sequence classification: GLUE tasks examples
thomwolf's avatar
thomwolf committed
212

thomwolf's avatar
thomwolf committed
213
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
thomwolf's avatar
thomwolf committed
214

thomwolf's avatar
thomwolf committed
215
216
217
218
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
thomwolf's avatar
thomwolf committed
219

thomwolf's avatar
thomwolf committed
220
221
222
```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
thomwolf's avatar
thomwolf committed
223

thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
231
232
233
234
235
python run_bert_classifier.py \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir $GLUE_DIR/$TASK_NAME \
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --output_dir /tmp/$TASK_NAME/
thomwolf's avatar
thomwolf committed
236
237
```

thomwolf's avatar
thomwolf committed
238
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
thomwolf's avatar
thomwolf committed
239

thomwolf's avatar
thomwolf committed
240
The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
thomwolf's avatar
thomwolf committed
241

thomwolf's avatar
thomwolf committed
242
#### Fine-tuning XLNet model on the STS-B regression task
thomwolf's avatar
thomwolf committed
243

thomwolf's avatar
thomwolf committed
244
245
This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
Parallel training is a simple way to use several GPU (but it is slower and less flexible than distributed training, see below).
thomwolf's avatar
thomwolf committed
246

thomwolf's avatar
thomwolf committed
247
248
```shell
export GLUE_DIR=/path/to/glue
thomwolf's avatar
thomwolf committed
249

thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
python ./examples/run_glue.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train  \
    --task_name=sts-b     \
    --data_dir=${GLUE_DIR}/STS-B  \
    --output_dir=./proc_data/sts-b-110   \
    --max_seq_length=128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --gradient_accumulation_steps=1 \
    --max_steps=1200  \
    --model_name=xlnet-large-cased   \
    --overwrite_output_dir   \
    --overwrite_cache \
    --warmup_steps=120
thomwolf's avatar
thomwolf committed
266
267
```

thomwolf's avatar
thomwolf committed
268
269
On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine.
These hyper-parameters give evaluation results pearsonr of `0.918`.
thomwolf's avatar
thomwolf committed
270

thomwolf's avatar
thomwolf committed
271
#### Fine-tuning Bert model on the MRPC classification task
thomwolf's avatar
thomwolf committed
272

thomwolf's avatar
thomwolf committed
273
This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
thomwolf's avatar
thomwolf committed
274

thomwolf's avatar
thomwolf committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
```bash
python -m torch.distributed.launch --nproc_per_node 8 run_bert_classifier.py   \
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name MRPC \
    --do_train   \
    --do_eval   \
    --do_lower_case   \
    --data_dir $GLUE_DIR/MRPC/   \
    --max_seq_length 128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5   \
    --num_train_epochs 3.0  \
    --output_dir /tmp/mrpc_output/ \
    --overwrite_output_dir   \
    --overwrite_cache \
thomwolf's avatar
thomwolf committed
292
293
```

thomwolf's avatar
thomwolf committed
294
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
295

thomwolf's avatar
thomwolf committed
296
297
298
299
300
301
302
```bash
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
thomwolf's avatar
thomwolf committed
303
304
```

thomwolf's avatar
thomwolf committed
305
### Fine-tuning for question-answering: SQuAD example
thomwolf's avatar
thomwolf committed
306

thomwolf's avatar
thomwolf committed
307
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
thomwolf's avatar
thomwolf committed
308

thomwolf's avatar
thomwolf committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
```bash
python -m torch.distributed.launch --nproc_per_node=8 run_squad.py \
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
    --do_predict \
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ../models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \
thomwolf's avatar
thomwolf committed
325
326
```

thomwolf's avatar
thomwolf committed
327
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
328

thomwolf's avatar
thomwolf committed
329
330
331
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
thomwolf's avatar
thomwolf committed
332
333
```

thomwolf's avatar
thomwolf committed
334
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
335

thomwolf's avatar
thomwolf committed
336
### Conditional generation: Text generation with GPT, GPT-2, Transformer-XL and XLNet
337

thomwolf's avatar
thomwolf committed
338
339
A conditional generation script is also included to generate text from a prompt.
The generation script include the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
340

thomwolf's avatar
thomwolf committed
341
Here is how to run the script with the small version of OpenAI GPT-2 model:
342

thomwolf's avatar
thomwolf committed
343
344
345
346
347
```shell
python ./examples/run_glue.py \
    --model_type=gpt2 \
    --length=20 \
    --model_name_or_path=gpt2 \
348
349
```

thomwolf's avatar
thomwolf committed
350
## Documentation
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
The full documentation is available at https://huggingface.co/pytorch-transformers/.
thomwolf's avatar
thomwolf committed
353

thomwolf's avatar
thomwolf committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
## Migrating from pytorch-pretrained-bert to pytorch-transformers

Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers`

### Models always output `tuples`

The main breaking change when migrating from `pytorch-pretrained-bert` to `pytorch-transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.

The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/pytorch-transformers/).

In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.

Here is a `pytorch-pretrained-bert` to `pytorch-transformers` conversion example for a `BertForSequenceClassification` classification model:

```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)

# Now just use this line in pytorch-transformers to extract the loss from the output tuple:
outputs = model(input_ids, labels=labels)
loss = outputs[0]

# In pytorch-transformers you can also have access to the logits:
loss, logits = outputs[:2]

# And even the attention weigths if you configure the model to output them (and other outputs too, see the docstrings and documentation)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```

### Serialization

While not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other seralization method before.

Here is an example:

```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)

### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')

### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```

### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules

The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer.
The new optimizer `AdamW` matches PyTorch `Adam` optimizer API.

The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.

Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:

```python
# Parameters:
lr = 1e-3
num_total_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps)  # 0.1

### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    optimizer.step()

### In PyTorch-Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps)  # PyTorch scheduler
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    scheduler.step()
    optimizer.step()
```

thomwolf's avatar
thomwolf committed
450
## Citation
thomwolf's avatar
thomwolf committed
451

thomwolf's avatar
thomwolf committed
452
At the moment, there is no paper associated to PyTorch-Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project.