README.md 32.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
<p align="center">
    <br>
thomwolf's avatar
thomwolf committed
3
    <img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
thomwolf's avatar
thomwolf committed
4
5
6
    <br>
<p>
<p align="center">
Lysandre Debut's avatar
Lysandre Debut committed
7
    <a href="https://circleci.com/gh/huggingface/transformers">
thomwolf's avatar
thomwolf committed
8
        <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
thomwolf's avatar
thomwolf committed
9
10
    </a>
    <a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
thomwolf's avatar
thomwolf committed
11
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
thomwolf's avatar
thomwolf committed
12
13
    </a>
    <a href="https://huggingface.co/transformers/index.html">
thomwolf's avatar
thomwolf committed
14
        <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online">
thomwolf's avatar
thomwolf committed
15
16
    </a>
    <a href="https://github.com/huggingface/transformers/releases">
thomwolf's avatar
thomwolf committed
17
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
thomwolf's avatar
thomwolf committed
18
19
20
    </a>
</p>

thomwolf's avatar
thomwolf committed
21
22
23
<h3 align="center">
<p>State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
</h3>
thomwolf's avatar
thomwolf committed
24

keskarnitish's avatar
keskarnitish committed
25
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
thomwolf's avatar
thomwolf committed
26
27

### Features
thomwolf's avatar
thomwolf committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41

- As easy to use as pytorch-transformers
- As powerful and concise as Keras
- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

State-of-the-art NLP for everyone
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

Lower compute costs, smaller carbon footprint
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
42
- 10 architectures with over 30 pretrained models, some in more than 100 languages
thomwolf's avatar
thomwolf committed
43
44
45

Choose the right framework for every part of a model's lifetime
- Train state-of-the-art models in 3 lines of code
thomwolf's avatar
thomwolf committed
46
47
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
thomwolf's avatar
thomwolf committed
48
- Seamlessly pick the right framework for training, evaluation, production
Julien Chaumond's avatar
Julien Chaumond committed
49

thomwolf's avatar
indeed  
thomwolf committed
50

thomwolf's avatar
thomwolf committed
51
52
53
| Section | Description |
|-|-|
| [Installation](#installation) | How to install the package |
thomwolf's avatar
thomwolf committed
54
| [Model architectures](#model-architectures) | Architectures (with pretrained weights) |
thomwolf's avatar
thomwolf committed
55
56
| [Online demo](#online-demo) | Experimenting with this repo’s text generation capabilities |
| [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
wangfei's avatar
wangfei committed
57
| [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
thomwolf's avatar
thomwolf committed
58
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
59
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
thomwolf's avatar
thomwolf committed
60
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
LysandreJik's avatar
LysandreJik committed
61
| [Documentation][(v2.2.0/v2.2.1)](https://huggingface.co/transformers/v2.2.0) [(v2.1.1)](https://huggingface.co/transformers/v2.1.1) [(v2.0.0)](https://huggingface.co/transformers/v2.0.0) [(v1.2.0)](https://huggingface.co/transformers/v1.2.0) [(v1.1.0)](https://huggingface.co/transformers/v1.1.0) [(v1.0.0)](https://huggingface.co/transformers/v1.0.0) [(master)](https://huggingface.co/transformers) | Full API documentation and more |
thomwolf's avatar
thomwolf committed
62

thomwolf's avatar
thomwolf committed
63
## Installation
VictorSanh's avatar
VictorSanh committed
64

65
This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+), PyTorch 1.0.0+ and TensorFlow 2.0.0-rc1
VictorSanh's avatar
VictorSanh committed
66

thomwolf's avatar
thomwolf committed
67
### With pip
thomwolf's avatar
thomwolf committed
68

69
First you need to install one of, or both, TensorFlow 2.0 and PyTorch.
Christopher Goh's avatar
Christopher Goh committed
70
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
71
72

When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows:
thomwolf's avatar
thomwolf committed
73

thomwolf's avatar
thomwolf committed
74
```bash
75
pip install transformers
thomwolf's avatar
thomwolf committed
76
```
VictorSanh's avatar
VictorSanh committed
77

thomwolf's avatar
thomwolf committed
78
### From source
thomwolf's avatar
thomwolf committed
79

80
Here also, you first need to install one of, or both, TensorFlow 2.0 and PyTorch.
Christopher Goh's avatar
Christopher Goh committed
81
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
82

DenysNahurnyi's avatar
DenysNahurnyi committed
83
When TensorFlow 2.0 and/or PyTorch has been installed, you can install from source by cloning the repository and running:
thomwolf's avatar
thomwolf committed
84

thomwolf's avatar
thomwolf committed
85
86
87
```bash
pip install [--editable] .
```
VictorSanh's avatar
VictorSanh committed
88

89
90
91
### Run the examples

Examples are included in the repository but are not shipped with the library.
92
Therefore, in order to run the latest versions of the examples you also need to install from source. To do so, create a new virtual environment and follow these steps:
93
94

```bash
Julien Chaumond's avatar
Julien Chaumond committed
95
git clone https://github.com/huggingface/transformers
96
cd transformers
97
pip install [--editable] .
98
99
```

thomwolf's avatar
thomwolf committed
100
### Tests
thomwolf's avatar
thomwolf committed
101

DenysNahurnyi's avatar
DenysNahurnyi committed
102
A series of tests are included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
thomwolf's avatar
thomwolf committed
103

104
These tests can be run using `unittest` or `pytest` (install pytest if needed with `pip install pytest`).
thomwolf's avatar
thomwolf committed
105

106
107
Depending on which framework is installed (TensorFlow 2.0 and/or PyTorch), the irrelevant tests will be skipped. Ensure that both frameworks are installed if you want to execute all tests.

thomwolf's avatar
thomwolf committed
108
You can run the tests from the root of the cloned repository with the commands:
thomwolf's avatar
thomwolf committed
109

110
111
112
113
114
115
116
```bash
python -m unittest discover -s transformers/tests -p "*test.py" -t .
python -m unittest discover -s examples -p "*test.py" -t examples
```

or

thomwolf's avatar
thomwolf committed
117
```bash
118
python -m pytest -sv ./transformers/tests/
thomwolf's avatar
thomwolf committed
119
120
python -m pytest -sv ./examples/
```
thomwolf's avatar
thomwolf committed
121

122
123
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to `yes` to run them.

124
125
126
127
### Do you want to run a Transformer model on a mobile device?

You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.

128
It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
129

130
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting!
131

thomwolf's avatar
thomwolf committed
132
133
## Model architectures

134
🤗 Transformers currently provides 10 NLU/NLG architectures:
thomwolf's avatar
thomwolf committed
135
136
137
138
139
140
141
142

1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
VictorSanh's avatar
VictorSanh committed
143
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
keskarnitish's avatar
keskarnitish committed
144
9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
145
10. **[CamemBERT](https://camembert-model.fr)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
Pierric Cistac's avatar
Pierric Cistac committed
146
11. **[ALBERT](https://github.com/google-research/ALBERT)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
147
148
12. **[MMBT](https://github.com/facebookresearch/mmbt/)** (from Facebook), released together with the paper a [Supervised Multimodal Bitransformers for Classifying Images and Text](https://arxiv.org/pdf/1909.02950.pdf) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine.
12. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
thomwolf's avatar
thomwolf committed
149
150
151

These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).

152
153
154
155
156
157
158
## Online demo

**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team at transformer.huggingface.co, is the official demo of this repo’s text generation capabilities.
You can use it to experiment with completions generated by `GPT2Model`, `TransfoXLModel`, and `XLNetModel`.

> “🦄 Write with transformer is to writing what calculators are to calculus.”

Julien Chaumond's avatar
Julien Chaumond committed
159
![write_with_transformer](https://transformer.huggingface.co/front/assets/thumbnail-large.png)
160

thomwolf's avatar
thomwolf committed
161
## Quick tour
thomwolf's avatar
thomwolf committed
162

thomwolf's avatar
thomwolf committed
163
Let's do a very quick overview of the model architectures in 🤗 Transformers. Detailed examples for each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [full documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
164
165
166

```python
import torch
167
from transformers import *
thomwolf's avatar
thomwolf committed
168

169
# Transformers has a unified API
thomwolf's avatar
thomwolf committed
170
# for 8 transformer architectures and 30 pretrained weights.
thomwolf's avatar
thomwolf committed
171
#          Model          | Tokenizer          | Pretrained weights shortcut
thomwolf's avatar
thomwolf committed
172
173
174
MODELS = [(BertModel,       BertTokenizer,       'bert-base-uncased'),
          (OpenAIGPTModel,  OpenAIGPTTokenizer,  'openai-gpt'),
          (GPT2Model,       GPT2Tokenizer,       'gpt2'),
keskarnitish's avatar
keskarnitish committed
175
          (CTRLModel,       CTRLTokenizer,       'ctrl'),
thomwolf's avatar
thomwolf committed
176
177
178
179
180
          (TransfoXLModel,  TransfoXLTokenizer,  'transfo-xl-wt103'),
          (XLNetModel,      XLNetTokenizer,      'xlnet-base-cased'),
          (XLMModel,        XLMTokenizer,        'xlm-mlm-enfr-1024'),
          (DistilBertModel, DistilBertTokenizer, 'distilbert-base-uncased'),
          (RobertaModel,    RobertaTokenizer,    'roberta-base')]
thomwolf's avatar
thomwolf committed
181

thomwolf's avatar
thomwolf committed
182
183
# To use TensorFlow 2.0 versions of the models, simply prefix the class names with 'TF', e.g. `TFRobertaModel` is the TF 2.0 counterpart of the PyTorch model `RobertaModel`

thomwolf's avatar
thomwolf committed
184
185
186
187
188
189
190
# Let's encode some text in a sequence of hidden-states using each model:
for model_class, tokenizer_class, pretrained_weights in MODELS:
    # Load pretrained model/tokenizer
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)

    # Encode text
191
    input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)])  # Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
Thomas Wolf's avatar
Thomas Wolf committed
192
193
    with torch.no_grad():
        last_hidden_states = model(input_ids)[0]  # Models outputs are now tuples
thomwolf's avatar
thomwolf committed
194
195
196

# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
thomwolf's avatar
thomwolf committed
197
                      BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]
thomwolf's avatar
thomwolf committed
198

thomwolf's avatar
thomwolf committed
199
200
201
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
# and need to be trained on the down-stream task
202
203
pretrained_weights = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
thomwolf's avatar
thomwolf committed
204
205
for model_class in BERT_MODEL_CLASSES:
    # Load pretrained model/tokenizer
206
    model = model_class.from_pretrained(pretrained_weights)
thomwolf's avatar
thomwolf committed
207

Santosh Gupta's avatar
Santosh Gupta committed
208
209
210
211
212
213
    # Models can return full list of hidden-states & attentions weights at each layer
    model = model_class.from_pretrained(pretrained_weights,
                                        output_hidden_states=True,
                                        output_attentions=True)
    input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
    all_hidden_states, all_attentions = model(input_ids)[-2:]
thomwolf's avatar
thomwolf committed
214

Santosh Gupta's avatar
Santosh Gupta committed
215
216
217
    # Models are compatible with Torchscript
    model = model_class.from_pretrained(pretrained_weights, torchscript=True)
    traced_model = torch.jit.trace(model, (input_ids,))
thomwolf's avatar
thomwolf committed
218

Santosh Gupta's avatar
Santosh Gupta committed
219
220
221
222
223
    # Simple serialization for models and tokenizers
    model.save_pretrained('./directory/to/save/')  # save
    model = model_class.from_pretrained('./directory/to/save/')  # re-load
    tokenizer.save_pretrained('./directory/to/save/')  # save
    tokenizer = BertTokenizer.from_pretrained('./directory/to/save/')  # re-load
thomwolf's avatar
thomwolf committed
224

Santosh Gupta's avatar
Santosh Gupta committed
225
    # SOTA examples for GLUE, SQUAD, text generation...
thomwolf's avatar
thomwolf committed
226
227
```

thomwolf's avatar
thomwolf committed
228
229
230
231
232
233
234
## Quick tour TF 2.0 training and PyTorch interoperability

Let's do a quick example of how a TensorFlow 2.0 model can be trained in 12 lines of code with 🤗 Transformers and then loaded in PyTorch for fast inspection/tests.

```python
import tensorflow as tf
import tensorflow_datasets
thomwolf's avatar
thomwolf committed
235
from transformers import *
thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
242

# Load dataset, tokenizer, model from pretrained model/vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
data = tensorflow_datasets.load('glue/mrpc')

# Prepare dataset for GLUE as a tf.data.Dataset instance
thomwolf's avatar
thomwolf committed
243
244
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, max_length=128, task='mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, max_length=128, task='mrpc')
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
valid_dataset = valid_dataset.batch(64)

# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule 
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

# Train and evaluate using tf.keras.Model.fit()
history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
                    validation_data=valid_dataset, validation_steps=7)

# Load the TensorFlow model in PyTorch for inspection
model.save_pretrained('./save/')
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)

# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = "This research was consistent with his findings."
sentence_1 = "His findings were compatible with this research."
sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')

269
270
271
pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()
pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()

thomwolf's avatar
thomwolf committed
272
273
274
275
print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
```

thomwolf's avatar
thomwolf committed
276
## Quick tour of the fine-tuning/usage scripts
thomwolf's avatar
thomwolf committed
277

278
279
280
281
282
**Important**  
Before running the fine-tuning scripts, please read the
[instructions](#run-the-examples) on how to
setup your environment to run the examples.

thomwolf's avatar
thomwolf committed
283
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
thomwolf's avatar
thomwolf committed
284

thomwolf's avatar
thomwolf committed
285
286
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
keskarnitish's avatar
keskarnitish committed
287
- `run_generation.py`: an example using GPT, GPT-2, CTRL, Transformer-XL and XLNet for conditional language generation
thomwolf's avatar
thomwolf committed
288
- other model-specific examples (see the documentation).
thomwolf's avatar
thomwolf committed
289

thomwolf's avatar
thomwolf committed
290
Here are three quick usage examples for these scripts:
thomwolf's avatar
thomwolf committed
291

thomwolf's avatar
thomwolf committed
292
### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
thomwolf's avatar
thomwolf committed
293

thomwolf's avatar
thomwolf committed
294
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
thomwolf's avatar
thomwolf committed
295

thomwolf's avatar
thomwolf committed
296
297
298
299
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
thomwolf's avatar
thomwolf committed
300

301
302
303
304
305
306
You should also install the additional packages required by the examples:

```shell
pip install -r ./examples/requirements.txt
```

thomwolf's avatar
thomwolf committed
307
308
309
```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
thomwolf's avatar
thomwolf committed
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
python ./examples/run_glue.py \
    --model_type bert \
    --model_name_or_path bert-base-uncased \
    --task_name $TASK_NAME \
    --do_train \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5 \
    --num_train_epochs 3.0 \
    --output_dir /tmp/$TASK_NAME/
thomwolf's avatar
thomwolf committed
325
326
```

thomwolf's avatar
thomwolf committed
327
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
thomwolf's avatar
thomwolf committed
328

thomwolf's avatar
thomwolf committed
329
The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
thomwolf's avatar
thomwolf committed
330

thomwolf's avatar
thomwolf committed
331
#### Fine-tuning XLNet model on the STS-B regression task
thomwolf's avatar
thomwolf committed
332

thomwolf's avatar
thomwolf committed
333
This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
334
Parallel training is a simple way to use several GPUs (but is slower and less flexible than distributed training, see below).
thomwolf's avatar
thomwolf committed
335

thomwolf's avatar
thomwolf committed
336
337
```shell
export GLUE_DIR=/path/to/glue
thomwolf's avatar
thomwolf committed
338

thomwolf's avatar
thomwolf committed
339
340
341
342
python ./examples/run_glue.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train  \
343
    --do_eval   \
thomwolf's avatar
thomwolf committed
344
345
346
347
348
349
350
351
352
353
354
355
    --task_name=sts-b     \
    --data_dir=${GLUE_DIR}/STS-B  \
    --output_dir=./proc_data/sts-b-110   \
    --max_seq_length=128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --gradient_accumulation_steps=1 \
    --max_steps=1200  \
    --model_name=xlnet-large-cased   \
    --overwrite_output_dir   \
    --overwrite_cache \
    --warmup_steps=120
thomwolf's avatar
thomwolf committed
356
357
```

Anthony MOI's avatar
Anthony MOI committed
358
On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine. These hyper-parameters should result in a Pearson correlation coefficient of `+0.917` on the development set.
thomwolf's avatar
thomwolf committed
359

thomwolf's avatar
thomwolf committed
360
#### Fine-tuning Bert model on the MRPC classification task
thomwolf's avatar
thomwolf committed
361

thomwolf's avatar
thomwolf committed
362
This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
thomwolf's avatar
thomwolf committed
363

thomwolf's avatar
thomwolf committed
364
```bash
365
python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py   \
thomwolf's avatar
thomwolf committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name MRPC \
    --do_train   \
    --do_eval   \
    --do_lower_case   \
    --data_dir $GLUE_DIR/MRPC/   \
    --max_seq_length 128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5   \
    --num_train_epochs 3.0  \
    --output_dir /tmp/mrpc_output/ \
    --overwrite_output_dir   \
    --overwrite_cache \
thomwolf's avatar
thomwolf committed
381
382
```

thomwolf's avatar
thomwolf committed
383
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
384

thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
```bash
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
thomwolf's avatar
thomwolf committed
392
393
```

thomwolf's avatar
thomwolf committed
394
### `run_squad.py`: Fine-tuning on SQuAD for question-answering
thomwolf's avatar
thomwolf committed
395

thomwolf's avatar
thomwolf committed
396
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
thomwolf's avatar
thomwolf committed
397

thomwolf's avatar
thomwolf committed
398
```bash
399
python -m torch.distributed.launch --nproc_per_node=8 ./examples/run_squad.py \
thomwolf's avatar
thomwolf committed
400
401
402
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
thomwolf's avatar
thomwolf committed
403
    --do_eval \
thomwolf's avatar
thomwolf committed
404
405
406
407
408
409
410
411
412
413
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ../models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \
thomwolf's avatar
thomwolf committed
414
415
```

thomwolf's avatar
thomwolf committed
416
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
417

thomwolf's avatar
thomwolf committed
418
419
420
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
thomwolf's avatar
thomwolf committed
421
422
```

thomwolf's avatar
thomwolf committed
423
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
424

keskarnitish's avatar
keskarnitish committed
425
### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet
426

thomwolf's avatar
thomwolf committed
427
A conditional generation script is also included to generate text from a prompt.
DenysNahurnyi's avatar
DenysNahurnyi committed
428
The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high-quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
429

thomwolf's avatar
thomwolf committed
430
Here is how to run the script with the small version of OpenAI GPT-2 model:
431

thomwolf's avatar
thomwolf committed
432
```shell
thomwolf's avatar
thomwolf committed
433
python ./examples/run_generation.py \
thomwolf's avatar
thomwolf committed
434
435
436
    --model_type=gpt2 \
    --length=20 \
    --model_name_or_path=gpt2 \
437
438
```

keskarnitish's avatar
keskarnitish committed
439
440
441
442
443
and from the Salesforce CTRL model: 
```shell
python ./examples/run_generation.py \
    --model_type=ctrl \
    --length=20 \
444
    --model_name_or_path=ctrl \
keskarnitish's avatar
keskarnitish committed
445
446
447
448
    --temperature=0 \
    --repetition_penalty=1.2 \
```

thomwolf's avatar
thomwolf committed
449
450
451
452
453
454
455
456
457
458
459
460
461
## Migrating from pytorch-transformers to transformers

Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`.

### Positional order of some models' keywords inputs (`attention_mask`, `token_type_ids`...) changed

To be able to use Torchscript (see #1010, #1204 and #1195) the specific order of some models **keywords inputs** (`attention_mask`, `token_type_ids`...) has been changed.

If you used to call the models with keyword names for keyword arguments, e.g. `model(inputs_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)`, this should not cause any change.

If you used to call the models with positional inputs for keyword arguments, e.g. `model(inputs_ids, attention_mask, token_type_ids)`, you may have to double check the exact order of input arguments.


462
## Migrating from pytorch-pretrained-bert to transformers
thomwolf's avatar
thomwolf committed
463

thomwolf's avatar
thomwolf committed
464
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`.
thomwolf's avatar
thomwolf committed
465
466
467

### Models always output `tuples`

468
The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that every model's forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
thomwolf's avatar
thomwolf committed
469

DenysNahurnyi's avatar
DenysNahurnyi committed
470
The exact content of the tuples for each model is detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
471
472
473

In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.

474
Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
thomwolf's avatar
thomwolf committed
475
476
477
478
479
480
481
482

```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)

483
# Now just use this line in transformers to extract the loss from the output tuple:
thomwolf's avatar
thomwolf committed
484
485
486
outputs = model(input_ids, labels=labels)
loss = outputs[0]

487
# In transformers you can also have access to the logits:
thomwolf's avatar
thomwolf committed
488
489
loss, logits = outputs[:2]

490
# And even the attention weights if you configure the model to output them (and other outputs too, see the docstrings and documentation)
thomwolf's avatar
thomwolf committed
491
492
493
494
495
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```

496
497
498
499
### Using hidden states

By enabling the configuration option `output_hidden_states`, it was possible to retrieve the last hidden states of the encoder. In `pytorch-transformers` as well as `transformers` the return value has changed slightly: `all_hidden_states` now also includes the hidden state of the embeddings in addition to those of the encoding layers. This allows users to easily access the embeddings final state.

thomwolf's avatar
thomwolf committed
500
501
### Serialization

DenysNahurnyi's avatar
DenysNahurnyi committed
502
Breaking change in the `from_pretrained()` method:
503

Christopher Goh's avatar
Christopher Goh committed
504
1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them, don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
505

Christopher Goh's avatar
Christopher Goh committed
506
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead, which can break derived model classes built based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model's `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
507

thomwolf's avatar
typos  
thomwolf committed
508
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
thomwolf's avatar
thomwolf committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

Here is an example:

```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)

### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')

### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```

### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules

535
536
537
538
539
540
541
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:

- it only implements weights decay correction,
- schedules are now externals (see below),
- gradient clipping is now also external (see below).

The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
thomwolf's avatar
thomwolf committed
542
543
544
545
546
547
548
549

The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.

Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:

```python
# Parameters:
lr = 1e-3
550
max_grad_norm = 1.0
551
num_training_steps = 1000
thomwolf's avatar
thomwolf committed
552
num_warmup_steps = 100
553
warmup_proportion = float(num_warmup_steps) / float(num_training_steps)  # 0.1
thomwolf's avatar
thomwolf committed
554
555

### Previously BertAdam optimizer was instantiated like this:
556
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_training_steps)
thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    optimizer.step()

563
### In Transformers, optimizer and schedules are splitted and instantiated like this:
thomwolf's avatar
thomwolf committed
564
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
565
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)  # PyTorch scheduler
thomwolf's avatar
thomwolf committed
566
567
### and used like this:
for batch in train_data:
568
    model.train()
thomwolf's avatar
thomwolf committed
569
570
    loss = model(batch)
    loss.backward()
571
    torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)  # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
thomwolf's avatar
thomwolf committed
572
    optimizer.step()
thomwolf's avatar
thomwolf committed
573
    scheduler.step()
thomwolf's avatar
thomwolf committed
574
    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
575
576
```

thomwolf's avatar
thomwolf committed
577
## Citation
thomwolf's avatar
thomwolf committed
578

thomwolf's avatar
thomwolf committed
579
580
We now have a paper you can cite for the 🤗 Transformers library:
```
thomwolf's avatar
thomwolf committed
581
582
583
584
585
586
@article{Wolf2019HuggingFacesTS,
  title={HuggingFace's Transformers: State-of-the-art Natural Language Processing},
  author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and R'emi Louf and Morgan Funtowicz and Jamie Brew},
  journal={ArXiv},
  year={2019},
  volume={abs/1910.03771}
thomwolf's avatar
thomwolf committed
587
588
}
```