README.md 26.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
<p align="center">
    <br>
thomwolf's avatar
thomwolf committed
3
    <img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
    <br>
<p>
<p align="center">
    <a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
        <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformer?style=flat-square">
    </a>
    <a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue&style=flat-square">
    </a>
    <a href="https://huggingface.co/transformers/index.html">
        <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&style=flat-square&up_message=online">
    </a>
    <a href="https://github.com/huggingface/transformers/releases">
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg?style=flat-square">
    </a>
</p>

thomwolf's avatar
thomwolf committed
21
State-of-the-art Natural Language Processing (NLP) for TensorFlow 2.0 and PyTorch.
thomwolf's avatar
thomwolf committed
22

thomwolf's avatar
thomwolf committed
23
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose architectures (BERT, GPT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with more than 32+ pretrained checkpoints in 100+ languages.
thomwolf's avatar
thomwolf committed
24

thomwolf's avatar
thomwolf committed
25
Features
thomwolf's avatar
thomwolf committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
- As easy to use as pytorch-transformers
- As powerful and concise as Keras
- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

State-of-the-art NLP for everyone
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

Lower compute costs, smaller carbon footprint
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages

Choose the right framework for every part of a model's lifetime
- Train state-of-the-art models in 3 lines of code
thomwolf's avatar
thomwolf committed
43
44
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
thomwolf's avatar
thomwolf committed
45
- Seamlessly pick the right framework for training, evaluation, production
Julien Chaumond's avatar
Julien Chaumond committed
46

thomwolf's avatar
indeed  
thomwolf committed
47

thomwolf's avatar
thomwolf committed
48
49
50
| Section | Description |
|-|-|
| [Installation](#installation) | How to install the package |
thomwolf's avatar
thomwolf committed
51
| [Model architectures](#model-architectures) | Architectures (with pretrained weights) |
thomwolf's avatar
thomwolf committed
52
53
| [Online demo](#online-demo) | Experimenting with this repo’s text generation capabilities |
| [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
thomwolf's avatar
thomwolf committed
54
| [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-2.0-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
thomwolf's avatar
thomwolf committed
55
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
thomwolf's avatar
thomwolf committed
56
57
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
thomwolf's avatar
thomwolf committed
58
59
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and more |

thomwolf's avatar
thomwolf committed
60
## Installation
VictorSanh's avatar
VictorSanh committed
61

62
This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 1.0.0+
VictorSanh's avatar
VictorSanh committed
63

thomwolf's avatar
thomwolf committed
64
### With pip
thomwolf's avatar
thomwolf committed
65

66
Transformers can be installed by pip as follows:
thomwolf's avatar
thomwolf committed
67

thomwolf's avatar
thomwolf committed
68
```bash
69
pip install transformers
thomwolf's avatar
thomwolf committed
70
```
VictorSanh's avatar
VictorSanh committed
71

thomwolf's avatar
thomwolf committed
72
### From source
thomwolf's avatar
thomwolf committed
73
74

Clone the repository and run:
thomwolf's avatar
thomwolf committed
75

thomwolf's avatar
thomwolf committed
76
77
78
```bash
pip install [--editable] .
```
VictorSanh's avatar
VictorSanh committed
79

thomwolf's avatar
thomwolf committed
80
### Tests
thomwolf's avatar
thomwolf committed
81

82
A series of tests is included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
thomwolf's avatar
thomwolf committed
83

thomwolf's avatar
thomwolf committed
84
These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
thomwolf's avatar
thomwolf committed
85

thomwolf's avatar
thomwolf committed
86
You can run the tests from the root of the cloned repository with the commands:
thomwolf's avatar
thomwolf committed
87

thomwolf's avatar
thomwolf committed
88
```bash
89
python -m pytest -sv ./transformers/tests/
thomwolf's avatar
thomwolf committed
90
91
python -m pytest -sv ./examples/
```
thomwolf's avatar
thomwolf committed
92

93
94
95
96
97
98
99
100
101
### Do you want to run a Transformer model on a mobile device?

You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.

It contains an example of a conversion script from a Pytorch trained Transformer model (here, `GPT-2`) to a CoreML model that runs on iOS devices.

At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!

thomwolf's avatar
thomwolf committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
## Model architectures

🤗 Transformers currently provides 8 NLU/NLG architectures:

1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the blogpost [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5
) by Victor Sanh, Lysandre Debut and Thomas Wolf.

These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).

118
119
120
121
122
123
124
## Online demo

**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team at transformer.huggingface.co, is the official demo of this repo’s text generation capabilities.
You can use it to experiment with completions generated by `GPT2Model`, `TransfoXLModel`, and `XLNetModel`.

> “🦄 Write with transformer is to writing what calculators are to calculus.”

Julien Chaumond's avatar
Julien Chaumond committed
125
![write_with_transformer](https://transformer.huggingface.co/front/assets/thumbnail-large.png)
126

thomwolf's avatar
thomwolf committed
127
## Quick tour
thomwolf's avatar
thomwolf committed
128

thomwolf's avatar
thomwolf committed
129
Let's do a very quick overview of the model architectures in 🤗 Transformers. Detailed examples for each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [full documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
130
131
132

```python
import torch
133
from transformers import *
thomwolf's avatar
thomwolf committed
134

135
# Transformers has a unified API
thomwolf's avatar
thomwolf committed
136
# for 8 transformer architectures and 30 pretrained weights.
thomwolf's avatar
thomwolf committed
137
#          Model          | Tokenizer          | Pretrained weights shortcut
thomwolf's avatar
thomwolf committed
138
139
140
141
142
143
144
145
MODELS = [(BertModel,       BertTokenizer,       'bert-base-uncased'),
          (OpenAIGPTModel,  OpenAIGPTTokenizer,  'openai-gpt'),
          (GPT2Model,       GPT2Tokenizer,       'gpt2'),
          (TransfoXLModel,  TransfoXLTokenizer,  'transfo-xl-wt103'),
          (XLNetModel,      XLNetTokenizer,      'xlnet-base-cased'),
          (XLMModel,        XLMTokenizer,        'xlm-mlm-enfr-1024'),
          (DistilBertModel, DistilBertTokenizer, 'distilbert-base-uncased'),
          (RobertaModel,    RobertaTokenizer,    'roberta-base')]
thomwolf's avatar
thomwolf committed
146

thomwolf's avatar
thomwolf committed
147
148
# To use TensorFlow 2.0 versions of the models, simply prefix the class names with 'TF', e.g. `TFRobertaModel` is the TF 2.0 counterpart of the PyTorch model `RobertaModel`

thomwolf's avatar
thomwolf committed
149
150
151
152
153
154
155
# Let's encode some text in a sequence of hidden-states using each model:
for model_class, tokenizer_class, pretrained_weights in MODELS:
    # Load pretrained model/tokenizer
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)

    # Encode text
156
    input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)])  # Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
Thomas Wolf's avatar
Thomas Wolf committed
157
158
    with torch.no_grad():
        last_hidden_states = model(input_ids)[0]  # Models outputs are now tuples
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164

# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
                      BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
                      BertForQuestionAnswering]

thomwolf's avatar
thomwolf committed
165
166
167
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
# and need to be trained on the down-stream task
thomwolf's avatar
thomwolf committed
168
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
169
170
171
172
173
for model_class in BERT_MODEL_CLASSES:
    # Load pretrained model/tokenizer
    model = model_class.from_pretrained('bert-base-uncased')

# Models can return full list of hidden-states & attentions weights at each layer
thomwolf's avatar
thomwolf committed
174
175
176
model = model_class.from_pretrained(pretrained_weights,
                                    output_hidden_states=True,
                                    output_attentions=True)
thomwolf's avatar
thomwolf committed
177
178
179
180
181
182
183
184
185
186
187
input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
all_hidden_states, all_attentions = model(input_ids)[-2:]

# Models are compatible with Torchscript
model = model_class.from_pretrained(pretrained_weights, torchscript=True)
traced_model = torch.jit.trace(model, (input_ids,))

# Simple serialization for models and tokenizers
model.save_pretrained('./directory/to/save/')  # save
model = model_class.from_pretrained('./directory/to/save/')  # re-load
tokenizer.save_pretrained('./directory/to/save/')  # save
carefree0910's avatar
carefree0910 committed
188
tokenizer = tokenizer_class.from_pretrained('./directory/to/save/')  # re-load
thomwolf's avatar
thomwolf committed
189
190

# SOTA examples for GLUE, SQUAD, text generation...
thomwolf's avatar
thomwolf committed
191
192
```

thomwolf's avatar
thomwolf committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
## Quick tour TF 2.0 training and PyTorch interoperability

Let's do a quick example of how a TensorFlow 2.0 model can be trained in 12 lines of code with 🤗 Transformers and then loaded in PyTorch for fast inspection/tests.

```python
import tensorflow as tf
import tensorflow_datasets
from pytorch_transformers import *

# Load dataset, tokenizer, model from pretrained model/vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
data = tensorflow_datasets.load('glue/mrpc')

# Prepare dataset for GLUE as a tf.data.Dataset instance
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, 128, 'mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, 128, 'mrpc')
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
valid_dataset = valid_dataset.batch(64)

# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule 
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

# Train and evaluate using tf.keras.Model.fit()
history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,
                    validation_data=valid_dataset, validation_steps=7)

# Load the TensorFlow model in PyTorch for inspection
model.save_pretrained('./save/')
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)

# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = "This research was consistent with his findings."
sentence_1 = "His findings were compatible with this research."
sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')

pred_1 = pytorch_model(**inputs_1)[0].argmax().item()
pred_2 = pytorch_model(**inputs_2)[0].argmax().item()
print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
```

thomwolf's avatar
thomwolf committed
240
## Quick tour of the fine-tuning/usage scripts
thomwolf's avatar
thomwolf committed
241

thomwolf's avatar
thomwolf committed
242
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
thomwolf's avatar
thomwolf committed
243

thomwolf's avatar
thomwolf committed
244
245
246
247
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
- `run_generation.py`: an example using GPT, GPT-2, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
thomwolf's avatar
thomwolf committed
248

thomwolf's avatar
thomwolf committed
249
Here are three quick usage examples for these scripts:
thomwolf's avatar
thomwolf committed
250

thomwolf's avatar
thomwolf committed
251
### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
thomwolf's avatar
thomwolf committed
252

thomwolf's avatar
thomwolf committed
253
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
thomwolf's avatar
thomwolf committed
254

thomwolf's avatar
thomwolf committed
255
256
257
258
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
thomwolf's avatar
thomwolf committed
259

260
261
262
263
264
265
You should also install the additional packages required by the examples:

```shell
pip install -r ./examples/requirements.txt
```

thomwolf's avatar
thomwolf committed
266
267
268
```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
thomwolf's avatar
thomwolf committed
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
python ./examples/run_glue.py \
    --model_type bert \
    --model_name_or_path bert-base-uncased \
    --task_name $TASK_NAME \
    --do_train \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5 \
    --num_train_epochs 3.0 \
    --output_dir /tmp/$TASK_NAME/
thomwolf's avatar
thomwolf committed
284
285
```

thomwolf's avatar
thomwolf committed
286
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
thomwolf's avatar
thomwolf committed
287

thomwolf's avatar
thomwolf committed
288
The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
thomwolf's avatar
thomwolf committed
289

thomwolf's avatar
thomwolf committed
290
#### Fine-tuning XLNet model on the STS-B regression task
thomwolf's avatar
thomwolf committed
291

thomwolf's avatar
thomwolf committed
292
This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
293
Parallel training is a simple way to use several GPUs (but is slower and less flexible than distributed training, see below).
thomwolf's avatar
thomwolf committed
294

thomwolf's avatar
thomwolf committed
295
296
```shell
export GLUE_DIR=/path/to/glue
thomwolf's avatar
thomwolf committed
297

thomwolf's avatar
thomwolf committed
298
299
300
301
python ./examples/run_glue.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train  \
302
    --do_eval   \
thomwolf's avatar
thomwolf committed
303
304
305
306
307
308
309
310
311
312
313
314
    --task_name=sts-b     \
    --data_dir=${GLUE_DIR}/STS-B  \
    --output_dir=./proc_data/sts-b-110   \
    --max_seq_length=128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --gradient_accumulation_steps=1 \
    --max_steps=1200  \
    --model_name=xlnet-large-cased   \
    --overwrite_output_dir   \
    --overwrite_cache \
    --warmup_steps=120
thomwolf's avatar
thomwolf committed
315
316
```

Anthony MOI's avatar
Anthony MOI committed
317
On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine. These hyper-parameters should result in a Pearson correlation coefficient of `+0.917` on the development set.
thomwolf's avatar
thomwolf committed
318

thomwolf's avatar
thomwolf committed
319
#### Fine-tuning Bert model on the MRPC classification task
thomwolf's avatar
thomwolf committed
320

thomwolf's avatar
thomwolf committed
321
This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
thomwolf's avatar
thomwolf committed
322

thomwolf's avatar
thomwolf committed
323
```bash
324
python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py   \
thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name MRPC \
    --do_train   \
    --do_eval   \
    --do_lower_case   \
    --data_dir $GLUE_DIR/MRPC/   \
    --max_seq_length 128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5   \
    --num_train_epochs 3.0  \
    --output_dir /tmp/mrpc_output/ \
    --overwrite_output_dir   \
    --overwrite_cache \
thomwolf's avatar
thomwolf committed
340
341
```

thomwolf's avatar
thomwolf committed
342
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
343

thomwolf's avatar
thomwolf committed
344
345
346
347
348
349
350
```bash
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
thomwolf's avatar
thomwolf committed
351
352
```

thomwolf's avatar
thomwolf committed
353
### `run_squad.py`: Fine-tuning on SQuAD for question-answering
thomwolf's avatar
thomwolf committed
354

thomwolf's avatar
thomwolf committed
355
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
thomwolf's avatar
thomwolf committed
356

thomwolf's avatar
thomwolf committed
357
```bash
358
python -m torch.distributed.launch --nproc_per_node=8 ./examples/run_squad.py \
thomwolf's avatar
thomwolf committed
359
360
361
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
thomwolf's avatar
thomwolf committed
362
    --do_eval \
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
370
371
372
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ../models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \
thomwolf's avatar
thomwolf committed
373
374
```

thomwolf's avatar
thomwolf committed
375
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
376

thomwolf's avatar
thomwolf committed
377
378
379
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
thomwolf's avatar
thomwolf committed
380
381
```

thomwolf's avatar
thomwolf committed
382
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
383

thomwolf's avatar
thomwolf committed
384
### `run_generation.py`: Text generation with GPT, GPT-2, Transformer-XL and XLNet
385

thomwolf's avatar
thomwolf committed
386
A conditional generation script is also included to generate text from a prompt.
Julien Chaumond's avatar
Julien Chaumond committed
387
The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
388

thomwolf's avatar
thomwolf committed
389
Here is how to run the script with the small version of OpenAI GPT-2 model:
390

thomwolf's avatar
thomwolf committed
391
```shell
thomwolf's avatar
thomwolf committed
392
python ./examples/run_generation.py \
thomwolf's avatar
thomwolf committed
393
394
395
    --model_type=gpt2 \
    --length=20 \
    --model_name_or_path=gpt2 \
396
397
```

thomwolf's avatar
thomwolf committed
398
399
400
401
402
403
404
405
406
407
408
409
410
## Migrating from pytorch-transformers to transformers

Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`.

### Positional order of some models' keywords inputs (`attention_mask`, `token_type_ids`...) changed

To be able to use Torchscript (see #1010, #1204 and #1195) the specific order of some models **keywords inputs** (`attention_mask`, `token_type_ids`...) has been changed.

If you used to call the models with keyword names for keyword arguments, e.g. `model(inputs_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)`, this should not cause any change.

If you used to call the models with positional inputs for keyword arguments, e.g. `model(inputs_ids, attention_mask, token_type_ids)`, you may have to double check the exact order of input arguments.


411
## Migrating from pytorch-pretrained-bert to transformers
thomwolf's avatar
thomwolf committed
412

thomwolf's avatar
thomwolf committed
413
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `transformers`.
thomwolf's avatar
thomwolf committed
414
415
416

### Models always output `tuples`

417
The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
thomwolf's avatar
thomwolf committed
418

419
The exact content of the tuples for each model are detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
thomwolf's avatar
thomwolf committed
420
421
422

In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.

423
Here is a `pytorch-pretrained-bert` to `transformers` conversion example for a `BertForSequenceClassification` classification model:
thomwolf's avatar
thomwolf committed
424
425
426
427
428
429
430
431

```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)

432
# Now just use this line in transformers to extract the loss from the output tuple:
thomwolf's avatar
thomwolf committed
433
434
435
outputs = model(input_ids, labels=labels)
loss = outputs[0]

436
# In transformers you can also have access to the logits:
thomwolf's avatar
thomwolf committed
437
438
loss, logits = outputs[:2]

439
# And even the attention weights if you configure the model to output them (and other outputs too, see the docstrings and documentation)
thomwolf's avatar
thomwolf committed
440
441
442
443
444
445
446
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```

### Serialization

447
448
449
450
Breaking change in the `from_pretrained()`method:

1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.

451
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead which can break derived model classes build based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
452

thomwolf's avatar
typos  
thomwolf committed
453
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
thomwolf's avatar
thomwolf committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

Here is an example:

```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)

### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')

### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```

### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules

480
481
482
483
484
485
486
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer which has a few differences:

- it only implements weights decay correction,
- schedules are now externals (see below),
- gradient clipping is now also external (see below).

The new optimizer `AdamW` matches PyTorch `Adam` optimizer API and let you use standard PyTorch or apex methods for the schedule and clipping.
thomwolf's avatar
thomwolf committed
487
488
489
490
491
492
493
494

The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.

Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:

```python
# Parameters:
lr = 1e-3
495
max_grad_norm = 1.0
thomwolf's avatar
thomwolf committed
496
497
498
499
500
501
502
503
504
505
506
507
num_total_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps)  # 0.1

### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    optimizer.step()

508
### In Transformers, optimizer and schedules are splitted and instantiated like this:
thomwolf's avatar
thomwolf committed
509
510
511
512
513
514
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps)  # PyTorch scheduler
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
515
    torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)  # Gradient clipping is not in AdamW anymore (so you can use amp without issue)
thomwolf's avatar
thomwolf committed
516
    optimizer.step()
thomwolf's avatar
thomwolf committed
517
    scheduler.step()
thomwolf's avatar
thomwolf committed
518
    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
519
520
```

thomwolf's avatar
thomwolf committed
521
## Citation
thomwolf's avatar
thomwolf committed
522

523
At the moment, there is no paper associated to Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project.