run_glue.py 29.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19


import argparse
thomwolf's avatar
thomwolf committed
20
import glob
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import json
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
import logging
import os
import random

import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
thomwolf's avatar
thomwolf committed
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
31

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
35
36
37
    AdamW,
    AlbertConfig,
    AlbertForSequenceClassification,
    AlbertTokenizer,
38
39
40
    BertConfig,
    BertForSequenceClassification,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
41
42
43
    DistilBertConfig,
    DistilBertForSequenceClassification,
    DistilBertTokenizer,
44
45
46
47
48
    RobertaConfig,
    RobertaForSequenceClassification,
    RobertaTokenizer,
    XLMConfig,
    XLMForSequenceClassification,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50
51
    XLMRobertaConfig,
    XLMRobertaForSequenceClassification,
    XLMRobertaTokenizer,
52
53
54
55
    XLMTokenizer,
    XLNetConfig,
    XLNetForSequenceClassification,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
56
    get_linear_schedule_with_warmup,
57
)
58
from transformers import glue_compute_metrics as compute_metrics
Aymeric Augustin's avatar
Aymeric Augustin committed
59
from transformers import glue_convert_examples_to_features as convert_examples_to_features
60
61
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
Aymeric Augustin's avatar
Aymeric Augustin committed
62
63
64
65


try:
    from torch.utils.tensorboard import SummaryWriter
66
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
67
68
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
69
70
71

logger = logging.getLogger(__name__)

72
73
74
ALL_MODELS = sum(
    (
        tuple(conf.pretrained_config_archive_map.keys())
75
76
77
78
79
80
81
82
83
        for conf in (
            BertConfig,
            XLNetConfig,
            XLMConfig,
            RobertaConfig,
            DistilBertConfig,
            AlbertConfig,
            XLMRobertaConfig,
        )
84
85
86
    ),
    (),
)
87
88

MODEL_CLASSES = {
89
90
91
92
93
94
95
    "bert": (BertConfig, BertForSequenceClassification, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
    "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    "albert": (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer),
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer),
96
}
thomwolf's avatar
thomwolf committed
97

thomwolf's avatar
thomwolf committed
98
99
100
101
102
103
104
105
106

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
107
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
108
109
110
111
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
112
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
113
114
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
115

thomwolf's avatar
thomwolf committed
116
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
117
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
118
119
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
120
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
121

thomwolf's avatar
thomwolf committed
122
    # Prepare optimizer and schedule (linear warmup and decay)
123
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
124
    optimizer_grouped_parameters = [
125
126
127
128
129
130
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
Lysandre's avatar
Lysandre committed
131

thomwolf's avatar
thomwolf committed
132
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
133
134
135
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
136
137

    # Check if saved optimizer or scheduler states exist
138
139
140
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
141
        # Load in optimizer and scheduler states
142
143
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
144

thomwolf's avatar
thomwolf committed
145
146
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
147
            from apex import amp
thomwolf's avatar
thomwolf committed
148
149
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
150
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
151

152
153
154
155
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
156
157
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
158
        model = torch.nn.parallel.DistributedDataParallel(
159
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
160
        )
thomwolf's avatar
thomwolf committed
161

thomwolf's avatar
thomwolf committed
162
163
    # Train!
    logger.info("***** Running training *****")
164
165
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
166
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
167
168
169
170
171
172
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
173
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
174
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
175
176

    global_step = 0
177
178
179
180
181
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
182
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
183
184
185
186
187
188
189
190
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
191
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
192
    model.zero_grad()
193
    train_iterator = trange(
194
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
195
    )
196
    set_seed(args)  # Added here for reproductibility
thomwolf's avatar
thomwolf committed
197
198
199
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
200
201
202
203
204
205

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

thomwolf's avatar
thomwolf committed
206
            model.train()
thomwolf's avatar
thomwolf committed
207
            batch = tuple(t.to(args.device) for t in batch)
208
209
210
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
211
212
                    batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
213
            outputs = model(**inputs)
214
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
215
216

            if args.n_gpu > 1:
217
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
thomwolf's avatar
thomwolf committed
218
219
220
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
221
222
223
224
225
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
226
227

            tr_loss += loss.item()
228
            if (step + 1) % args.gradient_accumulation_steps == 0:
229
230
231
232
233
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
234
                optimizer.step()
thomwolf's avatar
thomwolf committed
235
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
236
                model.zero_grad()
thomwolf's avatar
thomwolf committed
237
                global_step += 1
thomwolf's avatar
thomwolf committed
238

thomwolf's avatar
thomwolf committed
239
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
240
                    logs = {}
241
242
243
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
244
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
245
                        for key, value in results.items():
246
                            eval_key = "eval_{}".format(key)
Juha Kiili's avatar
Juha Kiili committed
247
248
                            logs[eval_key] = value

249
250
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
251
252
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
thomwolf's avatar
thomwolf committed
253
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
254

Juha Kiili's avatar
Juha Kiili committed
255
256
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
257
                    print(json.dumps({**logs, **{"step": global_step}}))
thomwolf's avatar
thomwolf committed
258
259
260

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
261
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
thomwolf's avatar
thomwolf committed
262
263
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
264
265
266
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
267
                    model_to_save.save_pretrained(output_dir)
268
269
                    tokenizer.save_pretrained(output_dir)

270
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
271
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
272

273
274
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
275
276
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

thomwolf's avatar
thomwolf committed
277
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
278
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
279
280
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
281
            train_iterator.close()
thomwolf's avatar
thomwolf committed
282
            break
thomwolf's avatar
thomwolf committed
283

thomwolf's avatar
thomwolf committed
284
285
286
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
287
288
289
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
290
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
291
292
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
293
    eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
thomwolf's avatar
thomwolf committed
294
295
296
297
298
299
300
301

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
302
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
303
        # Note that DistributedSampler samples randomly
304
        eval_sampler = SequentialSampler(eval_dataset)
thomwolf's avatar
thomwolf committed
305
306
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
307
308
309
310
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
311
        # Eval!
thomwolf's avatar
thomwolf committed
312
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
313
314
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
315
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
316
317
318
319
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
320
            model.eval()
thomwolf's avatar
thomwolf committed
321
322
323
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
324
325
326
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
327
328
                        batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                    )  # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
329
330
331
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
332
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
333
334
335
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
336
                out_label_ids = inputs["labels"].detach().cpu().numpy()
thomwolf's avatar
thomwolf committed
337
338
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
339
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
thomwolf's avatar
thomwolf committed
340
341
342
343
344
345
346
347
348

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

349
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
350
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
351
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
352
353
354
355
356
357
358
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
359
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
360
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
361
362
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
363
    processor = processors[task]()
364
365
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
366
367
368
369
370
371
372
373
374
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
        ),
    )
375
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
376
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
377
378
        features = torch.load(cached_features_file)
    else:
379
380
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
381
        if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
382
            # HACK(label indices are swapped in RoBERTa pretrained model)
383
            label_list[1], label_list[2] = label_list[2], label_list[1]
384
385
386
387
388
389
390
391
392
393
394
395
        examples = (
            processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_length=args.max_seq_length,
            output_mode=output_mode,
            pad_on_left=bool(args.model_type in ["xlnet"]),  # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
396
        )
397
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
398
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
399
400
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
401
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
402
403
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

404
405
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
406
407
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
408
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
409
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
410
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
411
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
412

thomwolf's avatar
thomwolf committed
413
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
414
    return dataset
thomwolf's avatar
thomwolf committed
415
416


thomwolf's avatar
thomwolf committed
417
418
419
def main():
    parser = argparse.ArgumentParser()

420
    # Required parameters
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
thomwolf's avatar
thomwolf committed
456

457
    # Other parameters
458
    parser.add_argument(
459
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
483
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step.",
484
485
    )
    parser.add_argument(
486
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
487
488
489
    )

    parser.add_argument(
490
491
492
493
        "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
494
495
496
497
498
499
500
501
502
503
504
505
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
506
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
507
508
509
510
511
512
513
514
515
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

516
517
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
518
519
520
521
522
523
524
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
525
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
526
527
    )
    parser.add_argument(
528
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
thomwolf's avatar
thomwolf committed
547
548
    args = parser.parse_args()

549
550
551
552
553
554
555
556
557
558
559
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
560

thomwolf's avatar
thomwolf committed
561
562
563
564
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
565

thomwolf's avatar
thomwolf committed
566
567
568
569
570
571
572
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
573
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
574
575
576
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
577
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
578
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
579
580
581
    args.device = device

    # Setup logging
582
583
584
585
586
587
588
589
590
591
592
593
594
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
thomwolf's avatar
thomwolf committed
595

thomwolf's avatar
thomwolf committed
596
597
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
598
599

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
600
601
602
603
604
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
605
606
607
608
609
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
610
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
611

612
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
613
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
thomwolf's avatar
thomwolf committed
631
632

    if args.local_rank == 0:
633
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
634

thomwolf's avatar
thomwolf committed
635
    model.to(args.device)
thomwolf's avatar
thomwolf committed
636

thomwolf's avatar
thomwolf committed
637
638
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
639
    # Training
thomwolf's avatar
thomwolf committed
640
    if args.do_train:
641
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
642
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
643
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
644

thomwolf's avatar
thomwolf committed
645
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
646
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
647
648
649
650
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
651
        logger.info("Saving model checkpoint to %s", args.output_dir)
652
653
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
654
655
656
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
657
        model_to_save.save_pretrained(args.output_dir)
658
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
659
660

        # Good practice: save your training arguments together with the trained model
661
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
thomwolf's avatar
thomwolf committed
662

663
        # Load a trained model and vocabulary that you have fine-tuned
664
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
665
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
666
        model.to(args.device)
thomwolf's avatar
thomwolf committed
667

thomwolf's avatar
thomwolf committed
668
    # Evaluation
thomwolf's avatar
thomwolf committed
669
    results = {}
thomwolf's avatar
thomwolf committed
670
    if args.do_eval and args.local_rank in [-1, 0]:
671
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
672
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
673
        if args.eval_all_checkpoints:
674
675
676
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
677
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
678
679
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
680
681
682
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

thomwolf's avatar
thomwolf committed
683
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
684
            model.to(args.device)
685
            result = evaluate(args, model, tokenizer, prefix=prefix)
686
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
thomwolf's avatar
thomwolf committed
687
688
            results.update(result)

thomwolf's avatar
thomwolf committed
689
    return results
thomwolf's avatar
thomwolf committed
690
691
692
693


if __name__ == "__main__":
    main()