import_utils.py 52.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

18
import importlib.metadata
19
20
21
import importlib.util
import json
import os
22
import shutil
玩火's avatar
玩火 committed
23
import subprocess
24
import sys
25
import warnings
26
from collections import OrderedDict
27
from functools import lru_cache
28
29
from itertools import chain
from types import ModuleType
30
from typing import Any, Tuple, Union
31
32
33
34
35
36
37
38

from packaging import version

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

39

Yih-Dar's avatar
Yih-Dar committed
40
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
41
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
42
    # Check if the package spec exists and grab its version to avoid importing a local directory
43
44
45
46
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
47
            # Primary method to get the package version
48
49
            package_version = importlib.metadata.version(pkg_name)
        except importlib.metadata.PackageNotFoundError:
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            # Fallback method: Only for "torch" and versions containing "dev"
            if pkg_name == "torch":
                try:
                    package = importlib.import_module(pkg_name)
                    temp_version = getattr(package, "__version__", "N/A")
                    # Check if the version contains "dev"
                    if "dev" in temp_version:
                        package_version = temp_version
                        package_exists = True
                    else:
                        package_exists = False
                except ImportError:
                    # If the package can't be imported, it's not available
                    package_exists = False
            else:
                # For packages other than "torch", don't attempt the fallback and set as not available
                package_exists = False
        logger.debug(f"Detected {pkg_name} version: {package_version}")
68
69
70
71
72
73
    if return_version:
        return package_exists, package_version
    else:
        return package_exists


74
75
76
77
78
79
80
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

81
82
83
# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()

84
85
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

Yih-Dar's avatar
Yih-Dar committed
86
# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
87
88
89
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")

NielsRogge's avatar
NielsRogge committed
90
91
ACCELERATE_MIN_VERSION = "0.21.0"
FSDP_MIN_VERSION = "1.12.0"
92
XLA_FSDPV2_MIN_VERSION = "2.2.0"
NielsRogge's avatar
NielsRogge committed
93

94
95
96

_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
_apex_available = _is_package_available("apex")
97
_aqlm_available = _is_package_available("aqlm")
98
_av_available = importlib.util.find_spec("av") is not None
99
_bitsandbytes_available = _is_package_available("bitsandbytes")
100
_eetq_available = _is_package_available("eetq")
101
_galore_torch_available = _is_package_available("galore_torch")
102
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
Yih-Dar's avatar
Yih-Dar committed
103
_bs4_available = importlib.util.find_spec("bs4") is not None
104
_coloredlogs_available = _is_package_available("coloredlogs")
NielsRogge's avatar
NielsRogge committed
105
106
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
_cv2_available = importlib.util.find_spec("cv2") is not None
107
108
109
_datasets_available = _is_package_available("datasets")
_decord_available = importlib.util.find_spec("decord") is not None
_detectron2_available = _is_package_available("detectron2")
Yih-Dar's avatar
Yih-Dar committed
110
111
112
# We need to check both `faiss` and `faiss-cpu`.
_faiss_available = importlib.util.find_spec("faiss") is not None
try:
113
    _faiss_version = importlib.metadata.version("faiss")
Yih-Dar's avatar
Yih-Dar committed
114
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
115
except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
116
    try:
117
        _faiss_version = importlib.metadata.version("faiss-cpu")
Yih-Dar's avatar
Yih-Dar committed
118
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
119
    except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
120
        _faiss_available = False
121
_ftfy_available = _is_package_available("ftfy")
122
_g2p_en_available = _is_package_available("g2p_en")
123
124
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
_jieba_available = _is_package_available("jieba")
125
_jinja_available = _is_package_available("jinja2")
126
127
_kenlm_available = _is_package_available("kenlm")
_keras_nlp_available = _is_package_available("keras_nlp")
NielsRogge's avatar
NielsRogge committed
128
_levenshtein_available = _is_package_available("Levenshtein")
129
130
_librosa_available = _is_package_available("librosa")
_natten_available = _is_package_available("natten")
NielsRogge's avatar
NielsRogge committed
131
_nltk_available = _is_package_available("nltk")
132
133
134
_onnx_available = _is_package_available("onnx")
_openai_available = _is_package_available("openai")
_optimum_available = _is_package_available("optimum")
Marc Sun's avatar
Marc Sun committed
135
_auto_gptq_available = _is_package_available("auto_gptq")
136
137
# `importlib.metadata.version` doesn't work with `awq`
_auto_awq_available = importlib.util.find_spec("awq") is not None
138
_quanto_available = _is_package_available("quanto")
139
140
141
142
143
144
145
_pandas_available = _is_package_available("pandas")
_peft_available = _is_package_available("peft")
_phonemizer_available = _is_package_available("phonemizer")
_psutil_available = _is_package_available("psutil")
_py3nvml_available = _is_package_available("py3nvml")
_pyctcdecode_available = _is_package_available("pyctcdecode")
_pytesseract_available = _is_package_available("pytesseract")
146
_pytest_available = _is_package_available("pytest")
147
148
149
150
151
152
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
_rjieba_available = _is_package_available("rjieba")
_sacremoses_available = _is_package_available("sacremoses")
_safetensors_available = _is_package_available("safetensors")
_scipy_available = _is_package_available("scipy")
_sentencepiece_available = _is_package_available("sentencepiece")
153
_is_seqio_available = _is_package_available("seqio")
154
155
156
_sklearn_available = importlib.util.find_spec("sklearn") is not None
if _sklearn_available:
    try:
157
158
        importlib.metadata.version("scikit-learn")
    except importlib.metadata.PackageNotFoundError:
159
        _sklearn_available = False
160
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
161
162
_soundfile_available = _is_package_available("soundfile")
_spacy_available = _is_package_available("spacy")
163
_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
164
165
166
167
168
169
170
171
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
_tensorflow_text_available = _is_package_available("tensorflow_text")
_tf2onnx_available = _is_package_available("tf2onnx")
_timm_available = _is_package_available("timm")
_tokenizers_available = _is_package_available("tokenizers")
_torchaudio_available = _is_package_available("torchaudio")
_torchdistx_available = _is_package_available("torchdistx")
_torchvision_available = _is_package_available("torchvision")
172
_mlx_available = _is_package_available("mlx")
173
_hqq_available = _is_package_available("hqq")
174
175


176
_torch_version = "N/A"
177
_torch_available = False
178
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
179
    _torch_available, _torch_version = _is_package_available("torch", return_version=True)
180
181
182
183
184
185
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
186
_tf_available = False
187
188
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
189
else:
190
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
191
192
193
        # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
        # with tensorflow-cpu to make sure it still works!
        _tf_available = importlib.util.find_spec("tensorflow") is not None
194
195
196
197
198
199
200
201
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
202
                "tf-nightly-rocm",
203
204
205
206
207
208
209
210
211
212
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
213
                    _tf_version = importlib.metadata.version(pkg)
214
                    break
215
                except importlib.metadata.PackageNotFoundError:
216
217
218
219
220
221
222
223
224
225
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
226
227


Susnato Dhar's avatar
Susnato Dhar committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
_essentia_available = importlib.util.find_spec("essentia") is not None
try:
    _essentia_version = importlib.metadata.version("essentia")
    logger.debug(f"Successfully imported essentia version {_essentia_version}")
except importlib.metadata.PackageNotFoundError:
    _essentia_version = False


_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
try:
    _pretty_midi_version = importlib.metadata.version("pretty_midi")
    logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
except importlib.metadata.PackageNotFoundError:
    _pretty_midi_available = False


244
245
246
247
248
249
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
250
    ccl_version = importlib.metadata.version("oneccl_bind_pt")
251
    logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
252
except importlib.metadata.PackageNotFoundError:
253
    _is_ccl_available = False
254

255

256
257
258
259
260
261
262
263
264
265
_flax_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available, _flax_version = _is_package_available("flax", return_version=True)
    if _flax_available:
        _jax_available, _jax_version = _is_package_available("jax", return_version=True)
        if _jax_available:
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        else:
            _flax_available = _jax_available = False
            _jax_version = _flax_version = "N/A"
266

267
268
269
270
271
272
273
274

_torch_fx_available = False
if _torch_available:
    torch_version = version.parse(_torch_version)
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )
275
276


277
278
279
280
281
282
283
_torch_xla_available = False
if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
    _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
    if _torch_xla_available:
        logger.info(f"Torch XLA version {_torch_xla_version} available.")


284
def is_kenlm_available():
285
    return _kenlm_available
286
287


NielsRogge's avatar
NielsRogge committed
288
289
290
291
def is_cv2_available():
    return _cv2_available


292
293
294
295
def is_torch_available():
    return _torch_available


296
297
298
299
def is_hqq_available():
    return _hqq_available


300
301
302
303
def get_torch_version():
    return _torch_version


304
305
306
307
308
309
310
311
312
313
314
315
316
def is_torch_sdpa_available():
    if not is_torch_available():
        return False
    elif _torch_version == "N/A":
        return False

    # NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
    # - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
    # - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
    # NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
    return version.parse(_torch_version) >= version.parse("2.1.1")


NielsRogge's avatar
NielsRogge committed
317
def is_torchvision_available():
318
    return _torchvision_available
NielsRogge's avatar
NielsRogge committed
319
320


321
322
323
324
def is_galore_torch_available():
    return _galore_torch_available


325
326
327
328
329
330
331
332
def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


Susnato Dhar's avatar
Susnato Dhar committed
333
334
335
336
337
338
339
340
def is_essentia_available():
    return _essentia_available


def is_pretty_midi_available():
    return _pretty_midi_available


341
342
343
344
345
346
347
348
349
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def is_mamba_ssm_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        else:
            return _is_package_available("mamba_ssm")
    return False


def is_causal_conv1d_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        return _is_package_available("causal_conv1d")
    return False


371
372
373
374
375
376
377
378
379
def is_torch_mps_available():
    if is_torch_available():
        import torch

        if hasattr(torch.backends, "mps"):
            return torch.backends.mps.is_available()
    return False


380
def is_torch_bf16_gpu_available():
381
382
383
384
385
    if not is_torch_available():
        return False

    import torch

Roohollah Etemadi's avatar
Roohollah Etemadi committed
386
    return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
387
388
389
390
391
392
393
394


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

395
396
397
398
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
399
        return False
400

401
402
403
404
    return True


def is_torch_bf16_available():
405
406
407
408
409
410
411
412
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
413
414


415
416
417
418
419
420
421
422
423
424
@lru_cache()
def is_torch_fp16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    try:
        x = torch.zeros(2, 2, dtype=torch.float16).to(device)
        _ = x @ x
425
426
427
428
429
430
431
432

        # At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
        # models use this layer.
        batch, sentence_length, embedding_dim = 3, 4, 5
        embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
        layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
        _ = layer_norm(embedding)

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


@lru_cache()
def is_torch_bf16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    if device == "cuda":
        return is_torch_bf16_gpu_available()

    try:
        x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
        _ = x @ x
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


462
463
464
465
466
467
468
469
470
471
472
473
def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
474
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
475
476
477
478
479
480
481
482
483
        return False

    return True


def is_torch_fx_available():
    return _torch_fx_available


484
def is_peft_available():
485
    return _peft_available
486
487


NielsRogge's avatar
NielsRogge committed
488
def is_bs4_available():
489
    return _bs4_available
NielsRogge's avatar
NielsRogge committed
490
491


492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


Sylvain Gugger's avatar
Sylvain Gugger committed
508
def is_openai_available():
509
    return _openai_available
Sylvain Gugger's avatar
Sylvain Gugger committed
510
511


512
513
514
515
516
517
518
519
def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


520
521
522
523
def is_g2p_en_available():
    return _g2p_en_available


524
@lru_cache()
525
526
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
527
528
529
530
531
532
    warnings.warn(
        "`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
        "Please use the `is_torch_xla_available` instead.",
        FutureWarning,
    )

533
534
    if not _torch_available:
        return False
535
536
537
538
539
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
540

541
542
543
544
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
545
        return True
546
    return False
547
548


549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
    """
    Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
    the USE_TORCH_XLA to false.
    """
    assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."

    if not _torch_xla_available:
        return False

    import torch_xla

    if check_is_gpu:
        return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
    elif check_is_tpu:
        return torch_xla.runtime.device_type() == "TPU"

    return True


570
571
572
@lru_cache()
def is_torch_neuroncore_available(check_device=True):
    if importlib.util.find_spec("torch_neuronx") is not None:
573
        return is_torch_xla_available()
574
575
576
    return False


577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
@lru_cache()
def is_torch_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_npu") is None:
        return False

    import torch
    import torch_npu  # noqa: F401

    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()


596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
@lru_cache()
def is_torch_mlu_available(check_device=False):
    "Checks if `torch_mlu` is installed and potentially if a MLU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_mlu") is None:
        return False

    import torch
    import torch_mlu  # noqa: F401

    from ..dependency_versions_table import deps

    deps["deepspeed"] = "deepspeed-mlu>=0.10.1"

    if check_device:
        try:
            # Will raise a RuntimeError if no MLU is found
            _ = torch.mlu.device_count()
            return torch.mlu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "mlu") and torch.mlu.is_available()


619
def is_torchdynamo_available():
620
621
622
623
624
625
626
627
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return True
    except Exception:
        return False
628
629


630
631
632
633
634
635
def is_torch_compile_available():
    if not is_torch_available():
        return False

    import torch

636
637
    # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
    # 2.0 but let's do it later.
638
639
640
    return hasattr(torch, "compile")


641
642
643
644
645
646
647
648
649
650
651
def is_torchdynamo_compiling():
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return dynamo.is_compiling()
    except Exception:
        return False


652
653
654
655
656
657
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


658
659
660
661
662
663
664
665
666
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


def is_rjieba_available():
667
    return _rjieba_available
668
669
670


def is_psutil_available():
671
    return _psutil_available
672
673
674


def is_py3nvml_available():
675
    return _py3nvml_available
676
677


678
def is_sacremoses_available():
679
    return _sacremoses_available
680
681


682
def is_apex_available():
683
    return _apex_available
684
685


686
687
688
689
def is_aqlm_available():
    return _aqlm_available


690
691
692
693
def is_av_available():
    return _av_available


694
def is_ninja_available():
玩火's avatar
玩火 committed
695
696
697
698
699
700
701
702
703
704
    r"""
    Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
    [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
    """
    try:
        subprocess.check_output("ninja --version".split())
    except Exception:
        return False
    else:
        return True
705
706


707
def is_ipex_available():
708
709
710
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

711
    if not is_torch_available() or not _ipex_available:
712
        return False
713

714
715
716
717
718
719
720
721
722
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
723
724


725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
@lru_cache
def is_torch_xpu_available(check_device=False):
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if not is_ipex_available():
        return False

    import intel_extension_for_pytorch  # noqa: F401
    import torch

    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()


744
def is_bitsandbytes_available():
745
746
747
748
749
750
751
752
    if not is_torch_available():
        return False

    # bitsandbytes throws an error if cuda is not available
    # let's avoid that by adding a simple check
    import torch

    return _bitsandbytes_available and torch.cuda.is_available()
753
754


755
def is_flash_attn_2_available():
756
757
758
    if not is_torch_available():
        return False

759
760
761
    if not _is_package_available("flash_attn"):
        return False

762
763
764
    # Let's add an extra check to see if cuda is available
    import torch

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    if not torch.cuda.is_available():
        return False

    if torch.version.cuda:
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
    elif torch.version.hip:
        # TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
    else:
        return False


def is_flash_attn_greater_or_equal_2_10():
    if not _is_package_available("flash_attn"):
        return False

    return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
782
783


784
def is_torchdistx_available():
785
    return _torchdistx_available
786
787


788
789
790
791
792
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
793
    return _scipy_available
794
795
796


def is_sklearn_available():
797
    return _sklearn_available
798
799
800


def is_sentencepiece_available():
801
    return _sentencepiece_available
802
803


804
805
806
807
def is_seqio_available():
    return _is_seqio_available


808
809
810
811
812
813
def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


NielsRogge's avatar
NielsRogge committed
814
def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
815
    return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
816
817


NielsRogge's avatar
NielsRogge committed
818
def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
819
    return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
820
821


822
def is_optimum_available():
823
    return _optimum_available
824
825


826
827
828
829
def is_auto_awq_available():
    return _auto_awq_available


830
831
832
833
def is_quanto_available():
    return _quanto_available


Marc Sun's avatar
Marc Sun committed
834
835
836
837
def is_auto_gptq_available():
    return _auto_gptq_available


838
839
840
841
def is_eetq_available():
    return _eetq_available


NielsRogge's avatar
NielsRogge committed
842
843
844
845
def is_levenshtein_available():
    return _levenshtein_available


846
def is_optimum_neuron_available():
847
    return _optimum_available and _is_package_available("optimum.neuron")
848
849


850
def is_safetensors_available():
851
    return _safetensors_available
852
853


854
def is_tokenizers_available():
855
    return _tokenizers_available
856
857


858
@lru_cache
859
def is_vision_available():
860
861
862
    _pil_available = importlib.util.find_spec("PIL") is not None
    if _pil_available:
        try:
863
864
            package_version = importlib.metadata.version("Pillow")
        except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
865
866
867
868
            try:
                package_version = importlib.metadata.version("Pillow-SIMD")
            except importlib.metadata.PackageNotFoundError:
                return False
869
870
        logger.debug(f"Detected PIL version {package_version}")
    return _pil_available
871
872
873


def is_pytesseract_available():
874
    return _pytesseract_available
875
876


877
878
879
880
def is_pytest_available():
    return _pytest_available


881
def is_spacy_available():
882
    return _spacy_available
883
884


885
def is_tensorflow_text_available():
886
    return is_tf_available() and _tensorflow_text_available
887
888


889
def is_keras_nlp_available():
890
    return is_tensorflow_text_available() and _keras_nlp_available
891
892


893
894
895
896
897
898
899
900
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
901
902
903
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
904
            raise ImportError("databricks")
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
920
    return _pandas_available
921
922
923
924
925
926
927
928
929
930
931
932
933


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
934
    return _smdistributed_available
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
958
    return _smdistributed_available
959
960
961
962
963
964
965
966
967
968
969
970
971
972


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


973
974
975
976
def is_natten_available():
    return _natten_available


NielsRogge's avatar
NielsRogge committed
977
978
979
980
def is_nltk_available():
    return _nltk_available


981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


1007
1008
1009
1010
def is_ccl_available():
    return _is_ccl_available


1011
def is_decord_available():
1012
    return _decord_available
1013
1014


1015
def is_sudachi_available():
1016
    return _sudachipy_available
1017
1018


1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
def get_sudachi_version():
    return _sudachipy_version


def is_sudachi_projection_available():
    if not is_sudachi_available():
        return False

    # NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
    # - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
    return version.parse(_sudachipy_version) >= version.parse("0.6.8")


1032
def is_jumanpp_available():
Hao Wang's avatar
Hao Wang committed
1033
    return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
1034
1035


1036
1037
1038
1039
def is_cython_available():
    return importlib.util.find_spec("pyximport") is not None


1040
1041
1042
1043
def is_jieba_available():
    return _jieba_available


1044
1045
1046
1047
def is_jinja_available():
    return _jinja_available


1048
1049
1050
1051
def is_mlx_available():
    return _mlx_available


1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
# docstyle-ignore
AV_IMPORT_ERROR = """
{0} requires the PyAv library but it was not found in your environment. You can install it with:
```
pip install av
```
Please note that you may need to restart your runtime after installation.
"""


NielsRogge's avatar
NielsRogge committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
# docstyle-ignore
CV2_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
```
pip install opencv-python
```
Please note that you may need to restart your runtime after installation.
"""


1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
1086
that python file if that's the case. Please note that you may need to restart your runtime after installation.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
1100
Please note that you may need to restart your runtime after installation.
1101
1102
1103
1104
1105
1106
1107
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
1108
that match your environment. Please note that you may need to restart your runtime after installation.
1109
1110
1111
1112
1113
1114
1115
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
1116
that match your environment. Please note that you may need to restart your runtime after installation.
1117
1118
1119
1120
1121
1122
1123
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
1124
that match your environment. Please note that you may need to restart your runtime after installation.
1125
1126
1127
1128
1129
1130
1131
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
1132
Please note that you may need to restart your runtime after installation.
1133
1134
"""

NielsRogge's avatar
NielsRogge committed
1135
1136
1137
1138
1139
1140
1141
1142

# docstyle-ignore
TORCHVISION_IMPORT_ERROR = """
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
"""

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
1167
1168
1169
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
1170
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
1171
1172
"""

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
1184
Please note that you may need to restart your runtime after installation.
1185
1186
1187
1188
1189
1190
1191
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
1192
Please note that you may need to restart your runtime after installation.
1193
1194
1195
1196
1197
1198
1199
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
1200
that match your environment. Please note that you may need to restart your runtime after installation.
1201
1202
1203
1204
1205
1206
1207
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
1208
Please note that you may need to restart your runtime after installation.
1209
1210
1211
1212
1213
1214
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
1215
that match your environment. Please note that you may need to restart your runtime after installation.
1216
1217
"""

NielsRogge's avatar
NielsRogge committed
1218
1219
1220
1221
1222
LEVENSHTEIN_IMPORT_ERROR = """
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
"""

1223
1224
1225
1226
1227
1228
# docstyle-ignore
G2P_EN_IMPORT_ERROR = """
{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
"""

1229
1230
1231
1232
# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
1233
Please note that you may need to restart your runtime after installation.
1234
1235
1236
1237
1238
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
1239
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
1240
1241
"""

1242
1243
1244
1245
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
1246
Please note that you may need to restart your runtime after installation.
1247
1248
"""

1249
1250
1251
1252
1253

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
1254
Please note that you may need to restart your runtime after installation.
1255
1256
1257
1258
1259
1260
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
1261
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
1262
1263
1264
"""


1265
1266
1267
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
1268
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
1269
1270
"""

1271
1272
1273
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
1274
`pip install scipy`. Please note that you may need to restart your runtime after installation.
1275
1276
1277
1278
1279
1280
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
1281
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
1282
1283
1284
1285
1286
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
1287
`pip install timm`. Please note that you may need to restart your runtime after installation.
1288
1289
"""

1290
1291
1292
1293
1294
1295
1296
# docstyle-ignore
NATTEN_IMPORT_ERROR = """
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
shi-labs.com/natten . You can also install it with pip (may take longer to build):
`pip install natten`. Please note that you may need to restart your runtime after installation.
"""

NielsRogge's avatar
NielsRogge committed
1297
1298
1299
1300
1301
1302
1303
1304

# docstyle-ignore
NLTK_IMPORT_ERROR = """
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
"""


1305
1306
1307
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
1308
`pip install pillow`. Please note that you may need to restart your runtime after installation.
1309
1310
1311
1312
1313
1314
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
1315
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
1316
1317
1318
1319
1320
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
1321
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
1322
1323
"""

1324
1325
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
NielsRogge's avatar
NielsRogge committed
1326
1327
1328
{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
runtime after installation.
1329
1330
"""

1331
1332
1333
1334
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
1335
Please note that you may need to restart your runtime after installation.
1336
"""
1337

Susnato Dhar's avatar
Susnato Dhar committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
# docstyle-ignore
ESSENTIA_IMPORT_ERROR = """
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
`pip install essentia==2.1b6.dev1034`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
`pip install librosa`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
PRETTY_MIDI_IMPORT_ERROR = """
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
`pip install pretty_midi`
Please note that you may need to restart your runtime after installation.
"""

1359
1360
1361
1362
1363
DECORD_IMPORT_ERROR = """
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
decord`. Please note that you may need to restart your runtime after installation.
"""

Clémentine Fourrier's avatar
Clémentine Fourrier committed
1364
1365
1366
1367
1368
CYTHON_IMPORT_ERROR = """
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
Cython`. Please note that you may need to restart your runtime after installation.
"""

1369
1370
1371
1372
1373
JIEBA_IMPORT_ERROR = """
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
jieba`. Please note that you may need to restart your runtime after installation.
"""

1374
1375
1376
1377
1378
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""

1379
1380
1381
1382
1383
JINJA_IMPORT_ERROR = """
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
jinja2`. Please note that you may need to restart your runtime after installation.
"""

1384
1385
BACKENDS_MAPPING = OrderedDict(
    [
1386
        ("av", (is_av_available, AV_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1387
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1388
        ("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
1389
1390
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1391
        ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
1392
1393
1394
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
1395
        ("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
1396
1397
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1398
        ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1399
        ("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1400
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
1401
1402
1403
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
1404
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
1405
1406
1407
1408
1409
1410
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
1411
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
1412
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
1413
        ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1414
        ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
1415
1416
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1417
        ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
1418
1419
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
1420
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
1421
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
1422
        ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
Clémentine Fourrier's avatar
Clémentine Fourrier committed
1423
        ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
1424
        ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
1425
        ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
1426
        ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
1427
1428
1429
1430
1431
1432
1433
1434
1435
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
1436
1437
1438
1439
1440
1441
1442
1443
1444

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

1457
    def __getattribute__(cls, key):
1458
        if key.startswith("_") and key != "_from_config":
1459
            return super().__getattribute__(key)
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
        requires_backends(cls, cls._backends)


def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1523
1524
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1525
1526
1527
1528
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1529
1530
1531
1532


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551


def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
    """Imports transformers directly

    Args:
        path (`str`): The path to the source file
        file (`str`, optional): The file to join with the path. Defaults to "__init__.py".

    Returns:
        `ModuleType`: The resulting imported module
    """
    name = "transformers"
    location = os.path.join(path, file)
    spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    module = sys.modules[name]
    return module