import_utils.py 38.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

import importlib.util
import json
import os
21
import shutil
22
import sys
23
import warnings
24
from collections import OrderedDict
25
from functools import lru_cache, wraps
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from itertools import chain
from types import ModuleType
from typing import Any

from packaging import version

from transformers.utils.versions import importlib_metadata

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

46
47
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_torch_version = "N/A"
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
    _torch_available = importlib.util.find_spec("torch") is not None
    if _torch_available:
        try:
            _torch_version = importlib_metadata.version("torch")
            logger.info(f"PyTorch version {_torch_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _torch_available = False
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
63
64
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
65
else:
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
        _tf_available = importlib.util.find_spec("tensorflow") is not None
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
                    _tf_version = importlib_metadata.version(pkg)
                    break
                except importlib_metadata.PackageNotFoundError:
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
            else:
                logger.info(f"TensorFlow version {_tf_version} available.")
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
        _tf_available = False
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257


if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
    if _flax_available:
        try:
            _jax_version = importlib_metadata.version("jax")
            _flax_version = importlib_metadata.version("flax")
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        except importlib_metadata.PackageNotFoundError:
            _flax_available = False
else:
    _flax_available = False


_datasets_available = importlib.util.find_spec("datasets") is not None
try:
    # Check we're not importing a "datasets" directory somewhere but the actual library by trying to grab the version
    # AND checking it has an author field in the metadata that is HuggingFace.
    _ = importlib_metadata.version("datasets")
    _datasets_metadata = importlib_metadata.metadata("datasets")
    if _datasets_metadata.get("author", "") != "HuggingFace Inc.":
        _datasets_available = False
except importlib_metadata.PackageNotFoundError:
    _datasets_available = False


_detectron2_available = importlib.util.find_spec("detectron2") is not None
try:
    _detectron2_version = importlib_metadata.version("detectron2")
    logger.debug(f"Successfully imported detectron2 version {_detectron2_version}")
except importlib_metadata.PackageNotFoundError:
    _detectron2_available = False


_faiss_available = importlib.util.find_spec("faiss") is not None
try:
    _faiss_version = importlib_metadata.version("faiss")
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
except importlib_metadata.PackageNotFoundError:
    try:
        _faiss_version = importlib_metadata.version("faiss-cpu")
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
    except importlib_metadata.PackageNotFoundError:
        _faiss_available = False

_ftfy_available = importlib.util.find_spec("ftfy") is not None
try:
    _ftfy_version = importlib_metadata.version("ftfy")
    logger.debug(f"Successfully imported ftfy version {_ftfy_version}")
except importlib_metadata.PackageNotFoundError:
    _ftfy_available = False


coloredlogs = importlib.util.find_spec("coloredlogs") is not None
try:
    _coloredlogs_available = importlib_metadata.version("coloredlogs")
    logger.debug(f"Successfully imported sympy version {_coloredlogs_available}")
except importlib_metadata.PackageNotFoundError:
    _coloredlogs_available = False


sympy_available = importlib.util.find_spec("sympy") is not None
try:
    _sympy_available = importlib_metadata.version("sympy")
    logger.debug(f"Successfully imported sympy version {_sympy_available}")
except importlib_metadata.PackageNotFoundError:
    _sympy_available = False


_tf2onnx_available = importlib.util.find_spec("tf2onnx") is not None
try:
    _tf2onnx_version = importlib_metadata.version("tf2onnx")
    logger.debug(f"Successfully imported tf2onnx version {_tf2onnx_version}")
except importlib_metadata.PackageNotFoundError:
    _tf2onnx_available = False

_onnx_available = importlib.util.find_spec("onnxruntime") is not None
try:
    _onxx_version = importlib_metadata.version("onnx")
    logger.debug(f"Successfully imported onnx version {_onxx_version}")
except importlib_metadata.PackageNotFoundError:
    _onnx_available = False


_scatter_available = importlib.util.find_spec("torch_scatter") is not None
try:
    _scatter_version = importlib_metadata.version("torch_scatter")
    logger.debug(f"Successfully imported torch-scatter version {_scatter_version}")
except importlib_metadata.PackageNotFoundError:
    _scatter_available = False


_pytorch_quantization_available = importlib.util.find_spec("pytorch_quantization") is not None
try:
    _pytorch_quantization_version = importlib_metadata.version("pytorch_quantization")
    logger.debug(f"Successfully imported pytorch-quantization version {_pytorch_quantization_version}")
except importlib_metadata.PackageNotFoundError:
    _pytorch_quantization_available = False


_soundfile_available = importlib.util.find_spec("soundfile") is not None
try:
    _soundfile_version = importlib_metadata.version("soundfile")
    logger.debug(f"Successfully imported soundfile version {_soundfile_version}")
except importlib_metadata.PackageNotFoundError:
    _soundfile_available = False


_tensorflow_probability_available = importlib.util.find_spec("tensorflow_probability") is not None
try:
    _tensorflow_probability_version = importlib_metadata.version("tensorflow_probability")
    logger.debug(f"Successfully imported tensorflow-probability version {_tensorflow_probability_version}")
except importlib_metadata.PackageNotFoundError:
    _tensorflow_probability_available = False


_timm_available = importlib.util.find_spec("timm") is not None
try:
    _timm_version = importlib_metadata.version("timm")
    logger.debug(f"Successfully imported timm version {_timm_version}")
except importlib_metadata.PackageNotFoundError:
    _timm_available = False


_torchaudio_available = importlib.util.find_spec("torchaudio") is not None
try:
    _torchaudio_version = importlib_metadata.version("torchaudio")
    logger.debug(f"Successfully imported torchaudio version {_torchaudio_version}")
except importlib_metadata.PackageNotFoundError:
    _torchaudio_available = False


_phonemizer_available = importlib.util.find_spec("phonemizer") is not None
try:
    _phonemizer_version = importlib_metadata.version("phonemizer")
    logger.debug(f"Successfully imported phonemizer version {_phonemizer_version}")
except importlib_metadata.PackageNotFoundError:
    _phonemizer_available = False


_pyctcdecode_available = importlib.util.find_spec("pyctcdecode") is not None
try:
    _pyctcdecode_version = importlib_metadata.version("pyctcdecode")
    logger.debug(f"Successfully imported pyctcdecode version {_pyctcdecode_version}")
except importlib_metadata.PackageNotFoundError:
    _pyctcdecode_available = False


_librosa_available = importlib.util.find_spec("librosa") is not None
try:
    _librosa_version = importlib_metadata.version("librosa")
    logger.debug(f"Successfully imported librosa version {_librosa_version}")
except importlib_metadata.PackageNotFoundError:
    _librosa_available = False

258
259
260
261
262
263
264
265
266
267
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
    ccl_version = importlib_metadata.version("oneccl_bind_pt")
    logger.debug(f"Successfully imported oneccl_bind_pt version {ccl_version}")
except importlib_metadata.PackageNotFoundError:
    _is_ccl_available = False
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")
TORCH_ONNX_DICT_INPUTS_MINIMUM_VERSION = version.parse("1.8")


def is_torch_available():
    return _torch_available


def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


295
def is_torch_bf16_gpu_available():
296
297
298
299
300
301
302
303
304
    if not is_torch_available():
        return False

    import torch

    # since currently no utility function is available we build our own.
    # some bits come from https://github.com/pytorch/pytorch/blob/2289a12f21c54da93bf5d696e3f9aea83dd9c10d/torch/testing/_internal/common_cuda.py#L51
    # with additional check for torch version
    # to succeed:
305
306
307
    # 1. torch >= 1.10 (1.9 should be enough for AMP API has changed in 1.10, so using 1.10 as minimal)
    # 2. the hardware needs to support bf16 (GPU arch >= Ampere, or CPU)
    # 3. if using gpu, CUDA >= 11
308
309
310
    # 4. torch.autocast exists
    # XXX: one problem here is that it may give invalid results on mixed gpus setup, so it's
    # really only correct for the 0th gpu (or currently set default device if different from 0)
311
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.10"):
312
        return False
313
314
315

    if torch.cuda.is_available() and torch.version.cuda is not None:
        if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
316
            return False
317
        if int(torch.version.cuda.split(".")[0]) < 11:
318
            return False
319
        if not hasattr(torch.cuda.amp, "autocast"):
320
            return False
321
    else:
322
323
324
325
326
327
328
329
330
331
332
        return False

    return True


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

333
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.10"):
334
        return False
335

336
337
338
339
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
340
        return False
341

342
343
344
345
    return True


def is_torch_bf16_available():
346
347
348
349
350
351
352
353
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
354
355
356
357
358
359
360
361
362
363
364
365
366
367


def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
368
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
369
370
371
372
373
374
375
376
377
        return False

    return True


torch_version = None
_torch_fx_available = _torch_onnx_dict_inputs_support_available = False
if _torch_available:
    torch_version = version.parse(importlib_metadata.version("torch"))
378
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
379
380
381
382
383
384
385
386
387
388
389
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )

    _torch_onnx_dict_inputs_support_available = torch_version >= TORCH_ONNX_DICT_INPUTS_MINIMUM_VERSION


def is_torch_fx_available():
    return _torch_fx_available


NielsRogge's avatar
NielsRogge committed
390
391
392
393
def is_bs4_available():
    return importlib.util.find_spec("bs4") is not None


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
def is_torch_onnx_dict_inputs_support_available():
    return _torch_onnx_dict_inputs_support_available


def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


422
@lru_cache()
423
424
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
425
426
    if not _torch_available:
        return False
427
428
429
430
431
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
432

433
434
435
436
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
437
        return True
438
    return False
439
440


441
442
443
444
def is_torchdynamo_available():
    return importlib.util.find_spec("torchdynamo") is not None


445
446
447
448
449
450
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


451
452
453
454
455
456
457
458
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


459
460
461
462
def is_more_itertools_available():
    return importlib.util.find_spec("more_itertools") is not None


463
464
465
466
467
468
469
470
471
472
473
474
def is_rjieba_available():
    return importlib.util.find_spec("rjieba") is not None


def is_psutil_available():
    return importlib.util.find_spec("psutil") is not None


def is_py3nvml_available():
    return importlib.util.find_spec("py3nvml") is not None


475
476
477
478
def is_sacremoses_available():
    return importlib.util.find_spec("sacremoses") is not None


479
480
481
482
def is_apex_available():
    return importlib.util.find_spec("apex") is not None


483
484
485
486
def is_ninja_available():
    return importlib.util.find_spec("ninja") is not None


487
def is_ipex_available():
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

    if not is_torch_available() or importlib.util.find_spec("intel_extension_for_pytorch") is None:
        return False
    _ipex_version = "N/A"
    try:
        _ipex_version = importlib_metadata.version("intel_extension_for_pytorch")
    except importlib_metadata.PackageNotFoundError:
        return False
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
507
508


509
510
511
512
def is_bitsandbytes_available():
    return importlib.util.find_spec("bitsandbytes") is not None


513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
    return importlib.util.find_spec("scipy") is not None


def is_sklearn_available():
    if importlib.util.find_spec("sklearn") is None:
        return False
    return is_scipy_available() and importlib.util.find_spec("sklearn.metrics")


def is_sentencepiece_available():
    return importlib.util.find_spec("sentencepiece") is not None


def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


537
538
539
540
def is_accelerate_available():
    return importlib.util.find_spec("accelerate") is not None


541
542
543
544
def is_safetensors_available():
    return importlib.util.find_spec("safetensors") is not None


545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def is_tokenizers_available():
    return importlib.util.find_spec("tokenizers") is not None


def is_vision_available():
    return importlib.util.find_spec("PIL") is not None


def is_pytesseract_available():
    return importlib.util.find_spec("pytesseract") is not None


def is_spacy_available():
    return importlib.util.find_spec("spacy") is not None


561
562
563
564
def is_tensorflow_text_available():
    return importlib.util.find_spec("tensorflow_text") is not None


565
566
567
568
569
570
571
572
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
573
574
575
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
576
            raise ImportError("databricks")
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_scatter_available():
    return _scatter_available


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
    return importlib.util.find_spec("pandas") is not None


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
    return importlib.util.find_spec("smdistributed") is not None


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
    return importlib.util.find_spec("smdistributed") is not None


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


675
676
677
678
def is_ccl_available():
    return _is_ccl_available


679
680
681
682
683
684
685
686
def is_sudachi_available():
    return importlib.util.find_spec("sudachipy") is not None


def is_jumanpp_available():
    return (importlib.util.find_spec("pyknp") is not None) and (shutil.which("jumanpp") is not None)


687
688
689
690
691
692
693
694
695
696
697
698
699
700
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
701
that python file if that's the case. Please note that you may need to restart your runtime after installation.
702
703
704
705
706
707
708
709
710
711
712
713
714
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
715
Please note that you may need to restart your runtime after installation.
716
717
718
719
720
721
722
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
723
that match your environment. Please note that you may need to restart your runtime after installation.
724
725
726
727
728
729
730
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
731
that match your environment. Please note that you may need to restart your runtime after installation.
732
733
734
735
736
737
738
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
739
that match your environment. Please note that you may need to restart your runtime after installation.
740
741
742
743
744
745
746
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
747
Please note that you may need to restart your runtime after installation.
748
749
"""

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
774
775
776
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
777
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
778
779
"""

780
781
782
783
784
785
786
787
788
789
790

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
791
Please note that you may need to restart your runtime after installation.
792
793
794
795
796
797
798
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
799
Please note that you may need to restart your runtime after installation.
800
801
802
803
804
805
806
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
807
that match your environment. Please note that you may need to restart your runtime after installation.
808
809
810
811
812
813
814
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
815
Please note that you may need to restart your runtime after installation.
816
817
818
819
820
821
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
822
that match your environment. Please note that you may need to restart your runtime after installation.
823
824
825
826
827
828
"""


# docstyle-ignore
SCATTER_IMPORT_ERROR = """
{0} requires the torch-scatter library but it was not found in your environment. You can install it with pip as
829
explained here: https://github.com/rusty1s/pytorch_scatter. Please note that you may need to restart your runtime after installation.
830
831
832
833
834
835
"""

# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
836
Please note that you may need to restart your runtime after installation.
837
838
839
840
841
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
842
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
843
844
"""

845
846
847
848
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
849
Please note that you may need to restart your runtime after installation.
850
851
"""

852
853
854
855
856

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
857
Please note that you may need to restart your runtime after installation.
858
859
860
861
862
863
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
864
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
865
866
867
"""


868
869
870
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
871
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
872
873
874
"""


875
876
877
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
878
`pip install scipy`. Please note that you may need to restart your runtime after installation.
879
880
881
882
883
884
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
885
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
886
887
888
889
890
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
891
`pip install timm`. Please note that you may need to restart your runtime after installation.
892
893
894
895
896
"""

# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
897
`pip install pillow`. Please note that you may need to restart your runtime after installation.
898
899
900
901
902
903
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
904
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
905
906
907
908
909
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
910
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
911
912
"""

913
914
915
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
{0} requires the accelerate library but it was not found in your environment. You can install it with pip:
916
`pip install accelerate`. Please note that you may need to restart your runtime after installation.
917
918
"""

919
920
921
922
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
923
Please note that you may need to restart your runtime after installation.
924
"""
925
926
927

BACKENDS_MAPPING = OrderedDict(
    [
NielsRogge's avatar
NielsRogge committed
928
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
929
930
931
932
933
934
935
936
937
938
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
939
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
940
941
942
943
944
945
946
        ("scatter", (is_scatter_available, SCATTER_IMPORT_ERROR)),
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
947
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
948
949
950
951
952
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
953
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
954
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
955
956
957
958
959
960
961
962
963
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
964
965
966
967
968
969
970
971
972

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

    def __getattr__(cls, key):
        if key.startswith("_"):
            return super().__getattr__(cls, key)
        requires_backends(cls, cls._backends)


def torch_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_torch_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires PyTorch.")

    return wrapper


def tf_required(func):
    # Chose a different decorator name than in tests so it's clear they are not the same.
    @wraps(func)
    def wrapper(*args, **kwargs):
        if is_tf_available():
            return func(*args, **kwargs)
        else:
            raise ImportError(f"Method `{func.__name__}` requires TF.")

    return wrapper


def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1075
1076
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1077
1078
1079
1080
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1081
1082
1083
1084


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""