import_utils.py 49.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Import utilities: Utilities related to imports and our lazy inits.
"""

18
import importlib.metadata
19
20
21
import importlib.util
import json
import os
22
import shutil
玩火's avatar
玩火 committed
23
import subprocess
24
import sys
25
import warnings
26
from collections import OrderedDict
27
from functools import lru_cache
28
29
from itertools import chain
from types import ModuleType
30
from typing import Any, Tuple, Union
31
32
33
34
35
36
37
38

from packaging import version

from . import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

39

Yih-Dar's avatar
Yih-Dar committed
40
# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
41
42
43
44
45
46
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
    # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
    package_exists = importlib.util.find_spec(pkg_name) is not None
    package_version = "N/A"
    if package_exists:
        try:
47
            package_version = importlib.metadata.version(pkg_name)
48
            package_exists = True
49
        except importlib.metadata.PackageNotFoundError:
50
51
52
53
54
55
56
57
            package_exists = False
        logger.debug(f"Detected {pkg_name} version {package_version}")
    if return_version:
        return package_exists, package_version
    else:
        return package_exists


58
59
60
61
62
63
64
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})

USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()

65
66
67
# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()

68
69
FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()

Yih-Dar's avatar
Yih-Dar committed
70
# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
71
72
73
# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
TORCH_FX_REQUIRED_VERSION = version.parse("1.10")

NielsRogge's avatar
NielsRogge committed
74
75
76
ACCELERATE_MIN_VERSION = "0.21.0"
FSDP_MIN_VERSION = "1.12.0"

77
78
79

_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
_apex_available = _is_package_available("apex")
80
_aqlm_available = _is_package_available("aqlm")
81
_bitsandbytes_available = _is_package_available("bitsandbytes")
82
# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
Yih-Dar's avatar
Yih-Dar committed
83
_bs4_available = importlib.util.find_spec("bs4") is not None
84
_coloredlogs_available = _is_package_available("coloredlogs")
NielsRogge's avatar
NielsRogge committed
85
86
# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
_cv2_available = importlib.util.find_spec("cv2") is not None
87
88
89
_datasets_available = _is_package_available("datasets")
_decord_available = importlib.util.find_spec("decord") is not None
_detectron2_available = _is_package_available("detectron2")
Yih-Dar's avatar
Yih-Dar committed
90
91
92
# We need to check both `faiss` and `faiss-cpu`.
_faiss_available = importlib.util.find_spec("faiss") is not None
try:
93
    _faiss_version = importlib.metadata.version("faiss")
Yih-Dar's avatar
Yih-Dar committed
94
    logger.debug(f"Successfully imported faiss version {_faiss_version}")
95
except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
96
    try:
97
        _faiss_version = importlib.metadata.version("faiss-cpu")
Yih-Dar's avatar
Yih-Dar committed
98
        logger.debug(f"Successfully imported faiss version {_faiss_version}")
99
    except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
100
        _faiss_available = False
101
_ftfy_available = _is_package_available("ftfy")
102
_g2p_en_available = _is_package_available("g2p_en")
103
104
_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
_jieba_available = _is_package_available("jieba")
105
_jinja_available = _is_package_available("jinja2")
106
107
_kenlm_available = _is_package_available("kenlm")
_keras_nlp_available = _is_package_available("keras_nlp")
NielsRogge's avatar
NielsRogge committed
108
_levenshtein_available = _is_package_available("Levenshtein")
109
110
_librosa_available = _is_package_available("librosa")
_natten_available = _is_package_available("natten")
NielsRogge's avatar
NielsRogge committed
111
_nltk_available = _is_package_available("nltk")
112
113
114
_onnx_available = _is_package_available("onnx")
_openai_available = _is_package_available("openai")
_optimum_available = _is_package_available("optimum")
Marc Sun's avatar
Marc Sun committed
115
_auto_gptq_available = _is_package_available("auto_gptq")
116
117
# `importlib.metadata.version` doesn't work with `awq`
_auto_awq_available = importlib.util.find_spec("awq") is not None
118
119
120
121
122
123
124
_pandas_available = _is_package_available("pandas")
_peft_available = _is_package_available("peft")
_phonemizer_available = _is_package_available("phonemizer")
_psutil_available = _is_package_available("psutil")
_py3nvml_available = _is_package_available("py3nvml")
_pyctcdecode_available = _is_package_available("pyctcdecode")
_pytesseract_available = _is_package_available("pytesseract")
125
_pytest_available = _is_package_available("pytest")
126
127
128
129
130
131
_pytorch_quantization_available = _is_package_available("pytorch_quantization")
_rjieba_available = _is_package_available("rjieba")
_sacremoses_available = _is_package_available("sacremoses")
_safetensors_available = _is_package_available("safetensors")
_scipy_available = _is_package_available("scipy")
_sentencepiece_available = _is_package_available("sentencepiece")
132
_is_seqio_available = _is_package_available("seqio")
133
134
135
_sklearn_available = importlib.util.find_spec("sklearn") is not None
if _sklearn_available:
    try:
136
137
        importlib.metadata.version("scikit-learn")
    except importlib.metadata.PackageNotFoundError:
138
        _sklearn_available = False
139
_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
140
141
_soundfile_available = _is_package_available("soundfile")
_spacy_available = _is_package_available("spacy")
142
_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
143
144
145
146
147
148
149
150
_tensorflow_probability_available = _is_package_available("tensorflow_probability")
_tensorflow_text_available = _is_package_available("tensorflow_text")
_tf2onnx_available = _is_package_available("tf2onnx")
_timm_available = _is_package_available("timm")
_tokenizers_available = _is_package_available("tokenizers")
_torchaudio_available = _is_package_available("torchaudio")
_torchdistx_available = _is_package_available("torchdistx")
_torchvision_available = _is_package_available("torchvision")
151
_mlx_available = _is_package_available("mlx")
152
153


154
_torch_version = "N/A"
155
_torch_available = False
156
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
157
    _torch_available, _torch_version = _is_package_available("torch", return_version=True)
158
159
160
161
162
163
else:
    logger.info("Disabling PyTorch because USE_TF is set")
    _torch_available = False


_tf_version = "N/A"
164
_tf_available = False
165
166
if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
    _tf_available = True
167
else:
168
    if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
169
170
171
        # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
        # with tensorflow-cpu to make sure it still works!
        _tf_available = importlib.util.find_spec("tensorflow") is not None
172
173
174
175
176
177
178
179
        if _tf_available:
            candidates = (
                "tensorflow",
                "tensorflow-cpu",
                "tensorflow-gpu",
                "tf-nightly",
                "tf-nightly-cpu",
                "tf-nightly-gpu",
180
                "tf-nightly-rocm",
181
182
183
184
185
186
187
188
189
190
                "intel-tensorflow",
                "intel-tensorflow-avx512",
                "tensorflow-rocm",
                "tensorflow-macos",
                "tensorflow-aarch64",
            )
            _tf_version = None
            # For the metadata, we have to look for both tensorflow and tensorflow-cpu
            for pkg in candidates:
                try:
191
                    _tf_version = importlib.metadata.version(pkg)
192
                    break
193
                except importlib.metadata.PackageNotFoundError:
194
195
196
197
198
199
200
201
202
203
                    pass
            _tf_available = _tf_version is not None
        if _tf_available:
            if version.parse(_tf_version) < version.parse("2"):
                logger.info(
                    f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
                )
                _tf_available = False
    else:
        logger.info("Disabling Tensorflow because USE_TORCH is set")
204
205


Susnato Dhar's avatar
Susnato Dhar committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
_essentia_available = importlib.util.find_spec("essentia") is not None
try:
    _essentia_version = importlib.metadata.version("essentia")
    logger.debug(f"Successfully imported essentia version {_essentia_version}")
except importlib.metadata.PackageNotFoundError:
    _essentia_version = False


_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
try:
    _pretty_midi_version = importlib.metadata.version("pretty_midi")
    logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
except importlib.metadata.PackageNotFoundError:
    _pretty_midi_available = False


222
223
224
225
226
227
ccl_version = "N/A"
_is_ccl_available = (
    importlib.util.find_spec("torch_ccl") is not None
    or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
try:
228
    ccl_version = importlib.metadata.version("oneccl_bind_pt")
229
    logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
230
except importlib.metadata.PackageNotFoundError:
231
    _is_ccl_available = False
232

233

234
235
236
237
238
239
240
241
242
243
_flax_available = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
    _flax_available, _flax_version = _is_package_available("flax", return_version=True)
    if _flax_available:
        _jax_available, _jax_version = _is_package_available("jax", return_version=True)
        if _jax_available:
            logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
        else:
            _flax_available = _jax_available = False
            _jax_version = _flax_version = "N/A"
244

245
246
247
248
249
250
251
252

_torch_fx_available = False
if _torch_available:
    torch_version = version.parse(_torch_version)
    _torch_fx_available = (torch_version.major, torch_version.minor) >= (
        TORCH_FX_REQUIRED_VERSION.major,
        TORCH_FX_REQUIRED_VERSION.minor,
    )
253
254


255
256
257
258
259
260
261
_torch_xla_available = False
if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
    _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
    if _torch_xla_available:
        logger.info(f"Torch XLA version {_torch_xla_version} available.")


262
def is_kenlm_available():
263
    return _kenlm_available
264
265


NielsRogge's avatar
NielsRogge committed
266
267
268
269
def is_cv2_available():
    return _cv2_available


270
271
272
273
def is_torch_available():
    return _torch_available


274
275
276
277
def get_torch_version():
    return _torch_version


278
279
280
281
282
283
284
285
286
287
288
289
290
def is_torch_sdpa_available():
    if not is_torch_available():
        return False
    elif _torch_version == "N/A":
        return False

    # NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
    # - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
    # - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
    # NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
    return version.parse(_torch_version) >= version.parse("2.1.1")


NielsRogge's avatar
NielsRogge committed
291
def is_torchvision_available():
292
    return _torchvision_available
NielsRogge's avatar
NielsRogge committed
293
294


295
296
297
298
299
300
301
302
def is_pyctcdecode_available():
    return _pyctcdecode_available


def is_librosa_available():
    return _librosa_available


Susnato Dhar's avatar
Susnato Dhar committed
303
304
305
306
307
308
309
310
def is_essentia_available():
    return _essentia_available


def is_pretty_midi_available():
    return _pretty_midi_available


311
312
313
314
315
316
317
318
319
def is_torch_cuda_available():
    if is_torch_available():
        import torch

        return torch.cuda.is_available()
    else:
        return False


320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def is_mamba_ssm_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        else:
            return _is_package_available("mamba_ssm")
    return False


def is_causal_conv1d_available():
    if is_torch_available():
        import torch

        if not torch.cuda.is_available():
            return False
        return _is_package_available("causal_conv1d")
    return False


341
342
343
344
345
346
347
348
349
def is_torch_mps_available():
    if is_torch_available():
        import torch

        if hasattr(torch.backends, "mps"):
            return torch.backends.mps.is_available()
    return False


350
def is_torch_bf16_gpu_available():
351
352
353
354
355
    if not is_torch_available():
        return False

    import torch

Roohollah Etemadi's avatar
Roohollah Etemadi committed
356
    return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
357
358
359
360
361
362
363
364


def is_torch_bf16_cpu_available():
    if not is_torch_available():
        return False

    import torch

365
366
367
368
    try:
        # multiple levels of AttributeError depending on the pytorch version so do them all in one check
        _ = torch.cpu.amp.autocast
    except AttributeError:
369
        return False
370

371
372
373
374
    return True


def is_torch_bf16_available():
375
376
377
378
379
380
381
382
    # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
    # has become ambiguous and therefore deprecated
    warnings.warn(
        "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
        "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
        FutureWarning,
    )
    return is_torch_bf16_gpu_available()
383
384


385
386
387
388
389
390
391
392
393
394
@lru_cache()
def is_torch_fp16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    try:
        x = torch.zeros(2, 2, dtype=torch.float16).to(device)
        _ = x @ x
395
396
397
398
399
400
401
402

        # At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
        # models use this layer.
        batch, sentence_length, embedding_dim = 3, 4, 5
        embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
        layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
        _ = layer_norm(embedding)

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


@lru_cache()
def is_torch_bf16_available_on_device(device):
    if not is_torch_available():
        return False

    import torch

    if device == "cuda":
        return is_torch_bf16_gpu_available()

    try:
        x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
        _ = x @ x
    except:  # noqa: E722
        # TODO: more precise exception matching, if possible.
        # most backends should return `RuntimeError` however this is not guaranteed.
        return False

    return True


432
433
434
435
436
437
438
439
440
441
442
443
def is_torch_tf32_available():
    if not is_torch_available():
        return False

    import torch

    if not torch.cuda.is_available() or torch.version.cuda is None:
        return False
    if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
        return False
    if int(torch.version.cuda.split(".")[0]) < 11:
        return False
444
    if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
445
446
447
448
449
450
451
452
453
        return False

    return True


def is_torch_fx_available():
    return _torch_fx_available


454
def is_peft_available():
455
    return _peft_available
456
457


NielsRogge's avatar
NielsRogge committed
458
def is_bs4_available():
459
    return _bs4_available
NielsRogge's avatar
NielsRogge committed
460
461


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def is_tf_available():
    return _tf_available


def is_coloredlogs_available():
    return _coloredlogs_available


def is_tf2onnx_available():
    return _tf2onnx_available


def is_onnx_available():
    return _onnx_available


Sylvain Gugger's avatar
Sylvain Gugger committed
478
def is_openai_available():
479
    return _openai_available
Sylvain Gugger's avatar
Sylvain Gugger committed
480
481


482
483
484
485
486
487
488
489
def is_flax_available():
    return _flax_available


def is_ftfy_available():
    return _ftfy_available


490
491
492
493
def is_g2p_en_available():
    return _g2p_en_available


494
@lru_cache()
495
496
def is_torch_tpu_available(check_device=True):
    "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
497
498
499
500
501
502
    warnings.warn(
        "`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
        "Please use the `is_torch_xla_available` instead.",
        FutureWarning,
    )

503
504
    if not _torch_available:
        return False
505
506
507
508
509
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm
510

511
512
513
514
                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
515
        return True
516
    return False
517
518


519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
    """
    Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
    the USE_TORCH_XLA to false.
    """
    assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."

    if not _torch_xla_available:
        return False

    import torch_xla

    if check_is_gpu:
        return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
    elif check_is_tpu:
        return torch_xla.runtime.device_type() == "TPU"

    return True


540
541
542
@lru_cache()
def is_torch_neuroncore_available(check_device=True):
    if importlib.util.find_spec("torch_neuronx") is not None:
543
        return is_torch_xla_available()
544
545
546
    return False


547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
@lru_cache()
def is_torch_npu_available(check_device=False):
    "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
    if not _torch_available or importlib.util.find_spec("torch_npu") is None:
        return False

    import torch
    import torch_npu  # noqa: F401

    if check_device:
        try:
            # Will raise a RuntimeError if no NPU is found
            _ = torch.npu.device_count()
            return torch.npu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "npu") and torch.npu.is_available()


566
def is_torchdynamo_available():
567
568
569
570
571
572
573
574
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return True
    except Exception:
        return False
575
576


577
578
579
580
581
582
def is_torch_compile_available():
    if not is_torch_available():
        return False

    import torch

583
584
    # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
    # 2.0 but let's do it later.
585
586
587
    return hasattr(torch, "compile")


588
589
590
591
592
593
594
595
596
597
598
def is_torchdynamo_compiling():
    if not is_torch_available():
        return False
    try:
        import torch._dynamo as dynamo  # noqa: F401

        return dynamo.is_compiling()
    except Exception:
        return False


599
600
601
602
603
604
def is_torch_tensorrt_fx_available():
    if importlib.util.find_spec("torch_tensorrt") is None:
        return False
    return importlib.util.find_spec("torch_tensorrt.fx") is not None


605
606
607
608
609
610
611
612
613
def is_datasets_available():
    return _datasets_available


def is_detectron2_available():
    return _detectron2_available


def is_rjieba_available():
614
    return _rjieba_available
615
616
617


def is_psutil_available():
618
    return _psutil_available
619
620
621


def is_py3nvml_available():
622
    return _py3nvml_available
623
624


625
def is_sacremoses_available():
626
    return _sacremoses_available
627
628


629
def is_apex_available():
630
    return _apex_available
631
632


633
634
635
636
def is_aqlm_available():
    return _aqlm_available


637
def is_ninja_available():
玩火's avatar
玩火 committed
638
639
640
641
642
643
644
645
646
647
    r"""
    Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
    [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
    """
    try:
        subprocess.check_output("ninja --version".split())
    except Exception:
        return False
    else:
        return True
648
649


650
def is_ipex_available():
651
652
653
    def get_major_and_minor_from_version(full_version):
        return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)

654
    if not is_torch_available() or not _ipex_available:
655
        return False
656

657
658
659
660
661
662
663
664
665
    torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
    ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
    if torch_major_and_minor != ipex_major_and_minor:
        logger.warning(
            f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
            f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
        )
        return False
    return True
666
667


668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
@lru_cache
def is_torch_xpu_available(check_device=False):
    "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
    if not is_ipex_available():
        return False

    import intel_extension_for_pytorch  # noqa: F401
    import torch

    if check_device:
        try:
            # Will raise a RuntimeError if no XPU  is found
            _ = torch.xpu.device_count()
            return torch.xpu.is_available()
        except RuntimeError:
            return False
    return hasattr(torch, "xpu") and torch.xpu.is_available()


687
def is_bitsandbytes_available():
688
689
690
691
692
693
694
695
    if not is_torch_available():
        return False

    # bitsandbytes throws an error if cuda is not available
    # let's avoid that by adding a simple check
    import torch

    return _bitsandbytes_available and torch.cuda.is_available()
696
697


698
def is_flash_attn_2_available():
699
700
701
    if not is_torch_available():
        return False

702
703
704
    if not _is_package_available("flash_attn"):
        return False

705
706
707
    # Let's add an extra check to see if cuda is available
    import torch

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
    if not torch.cuda.is_available():
        return False

    if torch.version.cuda:
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
    elif torch.version.hip:
        # TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
        return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
    else:
        return False


def is_flash_attn_greater_or_equal_2_10():
    if not _is_package_available("flash_attn"):
        return False

    return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
725
726


727
def is_torchdistx_available():
728
    return _torchdistx_available
729
730


731
732
733
734
735
def is_faiss_available():
    return _faiss_available


def is_scipy_available():
736
    return _scipy_available
737
738
739


def is_sklearn_available():
740
    return _sklearn_available
741
742
743


def is_sentencepiece_available():
744
    return _sentencepiece_available
745
746


747
748
749
750
def is_seqio_available():
    return _is_seqio_available


751
752
753
754
755
756
def is_protobuf_available():
    if importlib.util.find_spec("google") is None:
        return False
    return importlib.util.find_spec("google.protobuf") is not None


NielsRogge's avatar
NielsRogge committed
757
def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
758
759
    if min_version is not None:
        return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
760
    return _accelerate_available
761
762


NielsRogge's avatar
NielsRogge committed
763
def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
764
    return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
765
766


767
def is_optimum_available():
768
    return _optimum_available
769
770


771
772
773
774
def is_auto_awq_available():
    return _auto_awq_available


Marc Sun's avatar
Marc Sun committed
775
776
777
778
def is_auto_gptq_available():
    return _auto_gptq_available


NielsRogge's avatar
NielsRogge committed
779
780
781
782
def is_levenshtein_available():
    return _levenshtein_available


783
def is_optimum_neuron_available():
784
    return _optimum_available and _is_package_available("optimum.neuron")
785
786


787
def is_safetensors_available():
788
    return _safetensors_available
789
790


791
def is_tokenizers_available():
792
    return _tokenizers_available
793
794


795
@lru_cache
796
def is_vision_available():
797
798
799
    _pil_available = importlib.util.find_spec("PIL") is not None
    if _pil_available:
        try:
800
801
            package_version = importlib.metadata.version("Pillow")
        except importlib.metadata.PackageNotFoundError:
Yih-Dar's avatar
Yih-Dar committed
802
803
804
805
            try:
                package_version = importlib.metadata.version("Pillow-SIMD")
            except importlib.metadata.PackageNotFoundError:
                return False
806
807
        logger.debug(f"Detected PIL version {package_version}")
    return _pil_available
808
809
810


def is_pytesseract_available():
811
    return _pytesseract_available
812
813


814
815
816
817
def is_pytest_available():
    return _pytest_available


818
def is_spacy_available():
819
    return _spacy_available
820
821


822
def is_tensorflow_text_available():
823
    return is_tf_available() and _tensorflow_text_available
824
825


826
def is_keras_nlp_available():
827
    return is_tensorflow_text_available() and _keras_nlp_available
828
829


830
831
832
833
834
835
836
837
def is_in_notebook():
    try:
        # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
        get_ipython = sys.modules["IPython"].get_ipython
        if "IPKernelApp" not in get_ipython().config:
            raise ImportError("console")
        if "VSCODE_PID" in os.environ:
            raise ImportError("vscode")
838
839
840
        if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
            # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
            # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
841
            raise ImportError("databricks")
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

        return importlib.util.find_spec("IPython") is not None
    except (AttributeError, ImportError, KeyError):
        return False


def is_pytorch_quantization_available():
    return _pytorch_quantization_available


def is_tensorflow_probability_available():
    return _tensorflow_probability_available


def is_pandas_available():
857
    return _pandas_available
858
859
860
861
862
863
864
865
866
867
868
869
870


def is_sagemaker_dp_enabled():
    # Get the sagemaker specific env variable.
    sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        sagemaker_params = json.loads(sagemaker_params)
        if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
871
    return _smdistributed_available
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894


def is_sagemaker_mp_enabled():
    # Get the sagemaker specific mp parameters from smp_options variable.
    smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
    try:
        # Parse it and check the field "partitions" is included, it is required for model parallel.
        smp_options = json.loads(smp_options)
        if "partitions" not in smp_options:
            return False
    except json.JSONDecodeError:
        return False

    # Get the sagemaker specific framework parameters from mpi_options variable.
    mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
    try:
        # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
        mpi_options = json.loads(mpi_options)
        if not mpi_options.get("sagemaker_mpi_enabled", False):
            return False
    except json.JSONDecodeError:
        return False
    # Lastly, check if the `smdistributed` module is present.
895
    return _smdistributed_available
896
897
898
899
900
901
902
903
904
905
906
907
908
909


def is_training_run_on_sagemaker():
    return "SAGEMAKER_JOB_NAME" in os.environ


def is_soundfile_availble():
    return _soundfile_available


def is_timm_available():
    return _timm_available


910
911
912
913
def is_natten_available():
    return _natten_available


NielsRogge's avatar
NielsRogge committed
914
915
916
917
def is_nltk_available():
    return _nltk_available


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
def is_torchaudio_available():
    return _torchaudio_available


def is_speech_available():
    # For now this depends on torchaudio but the exact dependency might evolve in the future.
    return _torchaudio_available


def is_phonemizer_available():
    return _phonemizer_available


def torch_only_method(fn):
    def wrapper(*args, **kwargs):
        if not _torch_available:
            raise ImportError(
                "You need to install pytorch to use this method or class, "
                "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
            )
        else:
            return fn(*args, **kwargs)

    return wrapper


944
945
946
947
def is_ccl_available():
    return _is_ccl_available


948
def is_decord_available():
949
    return _decord_available
950
951


952
def is_sudachi_available():
953
    return _sudachipy_available
954
955


956
957
958
959
960
961
962
963
964
965
966
967
968
def get_sudachi_version():
    return _sudachipy_version


def is_sudachi_projection_available():
    if not is_sudachi_available():
        return False

    # NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
    # - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
    return version.parse(_sudachipy_version) >= version.parse("0.6.8")


969
def is_jumanpp_available():
Hao Wang's avatar
Hao Wang committed
970
    return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
971
972


973
974
975
976
def is_cython_available():
    return importlib.util.find_spec("pyximport") is not None


977
978
979
980
def is_jieba_available():
    return _jieba_available


981
982
983
984
def is_jinja_available():
    return _jinja_available


985
986
987
988
def is_mlx_available():
    return _mlx_available


NielsRogge's avatar
NielsRogge committed
989
990
991
992
993
994
995
996
997
998
# docstyle-ignore
CV2_IMPORT_ERROR = """
{0} requires the OpenCV library but it was not found in your environment. You can install it with:
```
pip install opencv-python
```
Please note that you may need to restart your runtime after installation.
"""


999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
# docstyle-ignore
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.

Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
1013
that python file if that's the case. Please note that you may need to restart your runtime after installation.
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
"""


# docstyle-ignore
TOKENIZERS_IMPORT_ERROR = """
{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
```
pip install tokenizers
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install tokenizers
```
1027
Please note that you may need to restart your runtime after installation.
1028
1029
1030
1031
1032
1033
1034
"""


# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR = """
{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
1035
that match your environment. Please note that you may need to restart your runtime after installation.
1036
1037
1038
1039
1040
1041
1042
"""


# docstyle-ignore
PROTOBUF_IMPORT_ERROR = """
{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
1043
that match your environment. Please note that you may need to restart your runtime after installation.
1044
1045
1046
1047
1048
1049
1050
"""


# docstyle-ignore
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
1051
that match your environment. Please note that you may need to restart your runtime after installation.
1052
1053
1054
1055
1056
1057
1058
"""


# docstyle-ignore
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
1059
Please note that you may need to restart your runtime after installation.
1060
1061
"""

NielsRogge's avatar
NielsRogge committed
1062
1063
1064
1065
1066
1067
1068
1069

# docstyle-ignore
TORCHVISION_IMPORT_ERROR = """
{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
"""

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF = """
{0} requires the PyTorch library but it was not found in your environment.
However, we were able to find a TensorFlow installation. TensorFlow classes begin
with "TF", but are otherwise identically named to our PyTorch classes. This
means that the TF equivalent of the class you tried to import would be "TF{0}".
If you want to use TensorFlow, please use TF classes instead!

If you really do want to use PyTorch please go to
https://pytorch.org/get-started/locally/ and follow the instructions that
match your environment.
"""

# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH = """
{0} requires the TensorFlow library but it was not found in your environment.
However, we were able to find a PyTorch installation. PyTorch classes do not begin
with "TF", but are otherwise identically named to our TF classes.
If you want to use PyTorch, please use those classes instead!

If you really do want to use TensorFlow, please follow the instructions on the
installation page https://www.tensorflow.org/install that match your environment.
"""

NielsRogge's avatar
NielsRogge committed
1094
1095
1096
# docstyle-ignore
BS4_IMPORT_ERROR = """
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
1097
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
NielsRogge's avatar
NielsRogge committed
1098
1099
"""

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

# docstyle-ignore
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
1111
Please note that you may need to restart your runtime after installation.
1112
1113
1114
1115
1116
1117
1118
"""


# docstyle-ignore
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
1119
Please note that you may need to restart your runtime after installation.
1120
1121
1122
1123
1124
1125
1126
"""


# docstyle-ignore
DETECTRON2_IMPORT_ERROR = """
{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
1127
that match your environment. Please note that you may need to restart your runtime after installation.
1128
1129
1130
1131
1132
1133
1134
"""


# docstyle-ignore
FLAX_IMPORT_ERROR = """
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
installation page: https://github.com/google/flax and follow the ones that match your environment.
1135
Please note that you may need to restart your runtime after installation.
1136
1137
1138
1139
1140
1141
"""

# docstyle-ignore
FTFY_IMPORT_ERROR = """
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
1142
that match your environment. Please note that you may need to restart your runtime after installation.
1143
1144
"""

NielsRogge's avatar
NielsRogge committed
1145
1146
1147
1148
1149
LEVENSHTEIN_IMPORT_ERROR = """
{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
"""

1150
1151
1152
1153
1154
1155
# docstyle-ignore
G2P_EN_IMPORT_ERROR = """
{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
"""

1156
1157
1158
1159
# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR = """
{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
1160
Please note that you may need to restart your runtime after installation.
1161
1162
1163
1164
1165
"""

# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
1166
explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
1167
1168
"""

1169
1170
1171
1172
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR = """
{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
1173
Please note that you may need to restart your runtime after installation.
1174
1175
"""

1176
1177
1178
1179
1180

# docstyle-ignore
PANDAS_IMPORT_ERROR = """
{0} requires the pandas library but it was not found in your environment. You can install it with pip as
explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
1181
Please note that you may need to restart your runtime after installation.
1182
1183
1184
1185
1186
1187
"""


# docstyle-ignore
PHONEMIZER_IMPORT_ERROR = """
{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
1188
`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
1189
1190
1191
"""


1192
1193
1194
# docstyle-ignore
SACREMOSES_IMPORT_ERROR = """
{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
1195
`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
1196
1197
"""

1198
1199
1200
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
1201
`pip install scipy`. Please note that you may need to restart your runtime after installation.
1202
1203
1204
1205
1206
1207
"""


# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
1208
`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
1209
1210
1211
1212
1213
"""

# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
1214
`pip install timm`. Please note that you may need to restart your runtime after installation.
1215
1216
"""

1217
1218
1219
1220
1221
1222
1223
# docstyle-ignore
NATTEN_IMPORT_ERROR = """
{0} requires the natten library but it was not found in your environment. You can install it by referring to:
shi-labs.com/natten . You can also install it with pip (may take longer to build):
`pip install natten`. Please note that you may need to restart your runtime after installation.
"""

NielsRogge's avatar
NielsRogge committed
1224
1225
1226
1227
1228
1229
1230
1231

# docstyle-ignore
NLTK_IMPORT_ERROR = """
{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
"""


1232
1233
1234
# docstyle-ignore
VISION_IMPORT_ERROR = """
{0} requires the PIL library but it was not found in your environment. You can install it with pip:
1235
`pip install pillow`. Please note that you may need to restart your runtime after installation.
1236
1237
1238
1239
1240
1241
"""


# docstyle-ignore
PYTESSERACT_IMPORT_ERROR = """
{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
1242
`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
1243
1244
1245
1246
1247
"""

# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR = """
{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
1248
`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
1249
1250
"""

1251
1252
# docstyle-ignore
ACCELERATE_IMPORT_ERROR = """
NielsRogge's avatar
NielsRogge committed
1253
1254
1255
{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
runtime after installation.
1256
1257
"""

1258
1259
1260
1261
# docstyle-ignore
CCL_IMPORT_ERROR = """
{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
1262
Please note that you may need to restart your runtime after installation.
1263
"""
1264

Susnato Dhar's avatar
Susnato Dhar committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
# docstyle-ignore
ESSENTIA_IMPORT_ERROR = """
{0} requires essentia library. But that was not found in your environment. You can install them with pip:
`pip install essentia==2.1b6.dev1034`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
LIBROSA_IMPORT_ERROR = """
{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
`pip install librosa`
Please note that you may need to restart your runtime after installation.
"""

# docstyle-ignore
PRETTY_MIDI_IMPORT_ERROR = """
{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
`pip install pretty_midi`
Please note that you may need to restart your runtime after installation.
"""

1286
1287
1288
1289
1290
DECORD_IMPORT_ERROR = """
{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
decord`. Please note that you may need to restart your runtime after installation.
"""

Clémentine Fourrier's avatar
Clémentine Fourrier committed
1291
1292
1293
1294
1295
CYTHON_IMPORT_ERROR = """
{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
Cython`. Please note that you may need to restart your runtime after installation.
"""

1296
1297
1298
1299
1300
JIEBA_IMPORT_ERROR = """
{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
jieba`. Please note that you may need to restart your runtime after installation.
"""

1301
1302
1303
1304
1305
PEFT_IMPORT_ERROR = """
{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
peft`. Please note that you may need to restart your runtime after installation.
"""

1306
1307
1308
1309
1310
JINJA_IMPORT_ERROR = """
{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
jinja2`. Please note that you may need to restart your runtime after installation.
"""

1311
1312
BACKENDS_MAPPING = OrderedDict(
    [
NielsRogge's avatar
NielsRogge committed
1313
        ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1314
        ("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
1315
1316
        ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
        ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1317
        ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
1318
1319
1320
        ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
        ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
        ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
1321
        ("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
1322
1323
        ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
        ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1324
        ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1325
        ("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
Susnato Dhar's avatar
Susnato Dhar committed
1326
        ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
1327
1328
1329
        ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
        ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
        ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
1330
        ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
1331
1332
1333
1334
1335
1336
        ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
        ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
        ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
        ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
        ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
        ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
1337
        ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
1338
        ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
1339
        ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1340
        ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
1341
1342
        ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
        ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
NielsRogge's avatar
NielsRogge committed
1343
        ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
1344
1345
        ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
        ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
1346
        ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
1347
        ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
1348
        ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
Clémentine Fourrier's avatar
Clémentine Fourrier committed
1349
        ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
1350
        ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
1351
        ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
1352
        ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
1353
1354
1355
1356
1357
1358
1359
1360
1361
    ]
)


def requires_backends(obj, backends):
    if not isinstance(backends, (list, tuple)):
        backends = [backends]

    name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
1362
1363
1364
1365
1366
1367
1368
1369
1370

    # Raise an error for users who might not realize that classes without "TF" are torch-only
    if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
        raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))

    # Raise the inverse error for PyTorch users trying to load TF classes
    if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
        raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
    checks = (BACKENDS_MAPPING[backend] for backend in backends)
    failed = [msg.format(name) for available, msg in checks if not available()]
    if failed:
        raise ImportError("".join(failed))


class DummyObject(type):
    """
    Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
    `requires_backend` each time a user tries to access any method of that class.
    """

1383
    def __getattribute__(cls, key):
1384
        if key.startswith("_") and key != "_from_config":
1385
            return super().__getattribute__(key)
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
        requires_backends(cls, cls._backends)


def is_torch_fx_proxy(x):
    if is_torch_fx_available():
        import torch.fx

        return isinstance(x, torch.fx.Proxy)
    return False


class _LazyModule(ModuleType):
    """
    Module class that surfaces all objects but only performs associated imports when the objects are requested.
    """

    # Very heavily inspired by optuna.integration._IntegrationModule
    # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
    def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
        super().__init__(name)
        self._modules = set(import_structure.keys())
        self._class_to_module = {}
        for key, values in import_structure.items():
            for value in values:
                self._class_to_module[value] = key
        # Needed for autocompletion in an IDE
        self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
        self.__file__ = module_file
        self.__spec__ = module_spec
        self.__path__ = [os.path.dirname(module_file)]
        self._objects = {} if extra_objects is None else extra_objects
        self._name = name
        self._import_structure = import_structure

    # Needed for autocompletion in an IDE
    def __dir__(self):
        result = super().__dir__()
        # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
        # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
        for attr in self.__all__:
            if attr not in result:
                result.append(attr)
        return result

    def __getattr__(self, name: str) -> Any:
        if name in self._objects:
            return self._objects[name]
        if name in self._modules:
            value = self._get_module(name)
        elif name in self._class_to_module.keys():
            module = self._get_module(self._class_to_module[name])
            value = getattr(module, name)
        else:
            raise AttributeError(f"module {self.__name__} has no attribute {name}")

        setattr(self, name, value)
        return value

    def _get_module(self, module_name: str):
        try:
            return importlib.import_module("." + module_name, self.__name__)
        except Exception as e:
            raise RuntimeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1449
1450
                f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
                f" traceback):\n{e}"
1451
1452
1453
1454
            ) from e

    def __reduce__(self):
        return (self.__class__, (self._name, self.__file__, self._import_structure))
1455
1456
1457
1458


class OptionalDependencyNotAvailable(BaseException):
    """Internally used error class for signalling an optional dependency was not found."""
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477


def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
    """Imports transformers directly

    Args:
        path (`str`): The path to the source file
        file (`str`, optional): The file to join with the path. Defaults to "__init__.py".

    Returns:
        `ModuleType`: The resulting imported module
    """
    name = "transformers"
    location = os.path.join(path, file)
    spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    module = sys.modules[name]
    return module